Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì dãy trên có 50 thừa số nên
100-2 là thừa số 1
100-4 là thừa số 2
...
100-2n là thừa số 50
=> 2n = 100=> n=50
Lúc đó P=0 do có thừa số 100-2n=0
P = (100 - 2)(100 - 4)(100 - 6)...(100 - 2n)
n = 50
2n = 100
nên P = 0
nha bạn chúc bạn học tốt nha
Ta sẽ tìm chữ số tận cùng của \(A=2+2^1+2^2+...+2^{10}\).
\(A=2+2^1+2^2+...+2^{10}\)
\(2A=4+2^2+2^3+...+2^{11}\)
\(2A-A=\left(4+2^2+2^3+...+2^{11}\right)-\left(2+2^1+2^2+...+2^{10}\right)\)
\(A=2^{11}=2048\)
Để thu được số chia hết cho \(10\)thì chữ số tận cùng của tổng thu được là chữ số \(0\).
Do đó số nguyên dương nhỏ nhất cần tìm là số \(2\).
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3
Ta có :P không chia hết cho 2
=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)
Mặt khác:P không chia hết cho 3
Nếu P= 3k +1 thì P-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3
Tương tự: Nếu P= 3k+2 thì P+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)
Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24
Gọi (n + 3,n + 2) = d
=> \(\hept{\begin{cases}n+3⋮d\\n+2⋮d\end{cases}}\Leftrightarrow\left(n+3\right)-\left(n+2\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
=> (n + 3, n + 2) = 1
=> ĐPCM
b) Gọi (2n + 3; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
=> \(2⋮d\Leftrightarrow d\in\left\{1;2\right\}\)
Khi d = 2 nhận thấy 2n + 3 \(⋮̸\)2 \(\forall n\)
=> d = 2 loại
=> d = 1
=> ĐPCM
Giải:
4.Theo đề bài ta có:
\(A=7.a+4 \)
\(=17.b+3 \)
\(=23.c+11 (a,b,c ∈ N)\)
Nếu ta thêm 150 vào số đã cho thì ta lần lượt có:
\(A+150=7.a+4+150=7.a+7.22=7.(a+22)\)
\(=17.b+3+150=17.b+17.9=17.(b+9)\)
\(=23.c+11+150=23.c+23.7=23.(c+7) \)
\(\Rightarrow A+150⋮7;17;23\).Nhưng 7, 17 và 23 là ba số đôi một nguyên tố cùng nhau, suy ra \(A+150⋮7.17.13=2737\)
Vậy \(A+150=2737k\left(k=1;2;3;4;...\right)\)
Suy ra: \(A=2737k-150=2737k-2737+2587=2737(k-1)+2587=2737k+2587\)
Do \(2587<2737\)
\(\Rightarrow A\div2737\) dư \(2587\)
các số nhỏ hơn hoặc bằng 2 là : 0,1,2
để n + 1 là số nguyên tố thì n = 1 hoặc 2
1+1=2
2 là số nguyên tố
2+1 = 3
3 là số nguyên tố