Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
a: \(\Leftrightarrow2n+1\in\left\{1;3;9\right\}\)
hay \(n\in\left\{0;1;4\right\}\)
\(a,\Leftrightarrow10n+14⋮2n+1\\ \Leftrightarrow5\left(2n+1\right)+9⋮2n+1\\ \Leftrightarrow2n+1\inƯ\left(9\right)=\left\{1;3;9\right\}\\ \Leftrightarrow n\in\left\{0;1;4\right\}\)
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Vì 15:(n-2)
Suy ra (n-2) thuộc Ư(15)
Vậy Ư(15) là:[1,-1,2,-2,3,-3,5,-5,15,-15]
Vì n là số tự nhiên suy ra Ư(15) khác các số âm trừ số -1;-2
Do đó ta có bảng sau:
n-2 | -2 | -1 | 1 | 3 | 5 | 15 |
n | 0 | 1 | 3 | 5 | 7 | 17 |
Vậy n=0;1;3;5;7
Vì n là các số lẻ suy ra n là số nguyên tố
b) -Nếu p=3 => p+2 = 5 là số nguyên tố
p+ 4=7 là số nguyên tố
=> p= 3 (chọn)
-Nếu p > 3 mà p là số nguyên tố
=> p = 3k+1 hoặc p= 3k+2
+) Nếu p= 3k+1=> p+2= 3k+1 +2 = 3k+3
=3(k+1) chia hết cho 3( là hợp số)
=> p=3k+1 (loại)
+) Nếu p= 3k+2=> p+4=3k+2 +4 =3k+6
=3(k+2) chia hết cho 3(là hợp số)
=> p=3k+2 (loại)
Vậy p= 3
các số nhỏ hơn hoặc bằng 2 là : 0,1,2
để n + 1 là số nguyên tố thì n = 1 hoặc 2
1+1=2
2 là số nguyên tố
2+1 = 3
3 là số nguyên tố