Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y+z+1x=x+z+2y=x+y−3z=1x+y+zy+z+1x=x+z+2y=x+y−3z=1x+y+z(đk x+y+z≠0≠0
⇒y+z+1x=x+z+2y=x+y−3z=y+z+1+x+z+2+x+y−3x+y+z=2⇒y+z+1x=x+z+2y=x+y−3z=y+z+1+x+z+2+x+y−3x+y+z=2
⇒1x+y+z=2⇒x+y+z=0,5⇒1x+y+z=2⇒x+y+z=0,5
⇒y+z=0,5−x,x+z=0,5−y,x+y=0,5−z⇒y+z=0,5−x,x+z=0,5−y,x+y=0,5−z
⇒0,5−x+1x=2⇒1,5−xx=2⇒1,5−x=2x⇒3x=1,5⇒x=12⇒0,5−x+1x=2⇒1,5−xx=2⇒1,5−x=2x⇒3x=1,5⇒x=12
⇒0,5−y+2y=2⇒2,5−yy=2⇒2,5−y=2y⇒3y=2,5⇒y=56⇒0,5−y+2y=2⇒2,5−yy=2⇒2,5−y=2y⇒3y=2,5⇒y=56
⇒z=0,5−12−56=−56⇒z=0,5−12−56=−56
Vậy x=12,y=56,z=−56
15-2n:n+1
2(n+1):n+1
15-2n-2(n+1):n+1
15-2n-2n-2:n+1
15-2:n+1
13:n+1
→n+1={1;13}
→n={9;12}
a) |x+y||x+y| \(\le\)≤ |x|+|y|
Bình 2 vế của bđt
(|x+y|2)\(\le\)(|x|+|y|)2
\(\Leftrightarrow x^2+y^2+2xy\le x^2+y^2+2\left|xy\right|\)
\(\Leftrightarrow xy\le\left|xy\right|\) luôn đúng
Dấu = khi \(xy\ge0\)
-->Đpcm
\(6n+9⋮4n-1\)
\(\Rightarrow2.\left(6n+9\right)⋮4n-1\)
\(\Rightarrow12n+18⋮4n-1\)
\(\Rightarrow12n-3+21⋮4n-1\)
\(\Rightarrow3.\left(4n-1\right)+21⋮4n-1\)
Vì \(3.\left(4n-1\right)⋮4n-1\Rightarrow21⋮4n-1\)
Mà 4n - 1 chia 4 dư 3; \(4n-1\ge-1\) do \(n\in N\)
\(\Rightarrow4n-1\in\left\{-1;3;7\right\}\)
\(\Rightarrow4n\in\left\{0;4;8\right\}\)
\(\Rightarrow n\in\left\{0;1;2\right\}\)
\(B=\left(1-\frac{1}{12}\right)\left(1-\frac{1}{13}\right)\left(1-\frac{1}{14}\right)\)
\(=>B=\frac{11}{12}\cdot\frac{12}{13}\cdot\frac{13}{14}\)
\(=>B=\frac{11\cdot12\cdot13}{12\cdot13\cdot14}=\frac{11}{14}\)
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3
Ta có :P không chia hết cho 2
=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)
Mặt khác:P không chia hết cho 3
Nếu P= 3k +1 thì P-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3
Tương tự: Nếu P= 3k+2 thì P+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)
Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24