K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Ta có :

Ba đường trung tuyến AX , BY , CZ

=> X , Y , Z là các trung điểm ứng với BC , AC , AB

Theo tính chất đường trung bình ,ta có :

XY = \(\dfrac{1}{2}AB=AZ=BZ\)

YZ = \(\dfrac{1}{2}BC=BX=CX\)

ZX = \(\dfrac{1}{2}AC=AY=YC\)

Xét tam giác AYZ và tam giác YXC (theo trường hợp c.c.c)

Xét tam giác YXC và tam giác ZXB (theo trường hợp c.c.c)

=> Tam giác AYZ = tam giác YXC = tam giác ZXB (1)

Xét tam giác AZY và tam giác XYZ có :

XZ = AY

XY = AZ     => Tam giác AZY = tam giác XYZ  (2)

ZY chung 

Từ (1) và (2) 

=> Tam giác AYZ = tam giác YXC = tam giác ZXB = tam giác XYZ

5 tháng 6 2017

Tự trả lời ? Đăng câu hỏi rồi bất chợp nghĩ ra đáp án à ^_^

1 tháng 10 2019

Gọi M,N,IM,N,I lần lượt là trung điểm AB,AC,ADAB,AC,AD
có M,N,IM,N,I thẳng hàng
AIEMAIEM nội tiếp⇒ˆAEF=ˆAMN⇒AEF^=AMN^(1)
AINFAINF nội tiếp ⇒ˆAFE=ˆANM⇒AFE^=ANM^(2)
(1,2)⇒ˆEDF=ˆEAF=90∘=ˆEOF⇒EDF^=EAF^=90∘=EOF^
⇒A,O,D,E,F⇒A,O,D,E,F cùng thuộc 1 đường tròn
b)
có △AEF△AEF luôn đồng dạng với △AMN△AMN cố định
⇒SAEF⇒SAEFmin khi AEAE min
có AE≥AMAE≥AM
⇒SAEF⇒SAEF min khi E≡M,F≡NE≡M,F≡N
lúc đó SAEF=bc8SAEF=bc8

Y
18 tháng 4 2019

a) + ΔADB ∼ ΔAEC ( g.g )

\(\Rightarrow\frac{AD}{AB}=\frac{AE}{AC}\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\)

+ ΔADE ∼ ΔABC ( c.g.c )

b) + AC // MH \(\Rightarrow\frac{AH}{AB}=\frac{MC}{CB}\)

+ AB // MK \(\Rightarrow\frac{CK}{AC}=\frac{MC}{CB}\)

\(\Rightarrow\frac{CK}{AC}-\frac{AH}{AB}=0\)

\(\Rightarrow\left(\frac{CK}{AC}+1\right)-\frac{AH}{AB}=1\)

\(\Rightarrow\frac{AK}{AC}-\frac{AH}{AB}=1\)

16 tháng 5 2017

O A B C X Y Z

Xét 3 tứ giác OAXC ; OBYA ; OBZC có :

X + XAO + OCX + AOC = 3600 (Tứ giác OAXC)

Y + OAY + AOB + OBY = 3600 (Tứ giác OBYA)

Z + OCZ + COB + OBZ = 3600 (Tứ giác OBZC)

Dựa vào dữ kiện các góc bằng nhau , ta suy ra 

Góc X = Góc Y = Góc Z

=> Tam giác XYZ đều 

biết đăng làm chi

29 tháng 12 2021

Không vẽ hình đc , sợ duyệt

a) Lấy \(E\)trên \(BC\)sao cho \(CDE=ADB\)

Tam giác \(CDE\)= tam giác \(ADB\left(g.g\right)\)

 Tỉ số các đường cao tương đương với ứng bằng tỉ số đóng dạng :

\(\frac{DH}{DK}=\frac{CE}{AB}=\frac{x}{z}=\frac{CE}{c}=\frac{c}{z}=\frac{CE}{x}\left(1\right)\)

Tương tự \(\frac{b}{y}=\frac{BE}{x}\left(2\right)\)

Từ (1) và (2) ta suy ra : \(\frac{b}{y}+\frac{c}{z}=\frac{BE+CE}{x}=\frac{a}{x}\)

b) Xét S \(=\frac{a}{x}+\left(\frac{b}{y}+\frac{c}{z}\right)=\frac{a}{x}+\frac{a}{x}=\frac{2a}{x}\). Do đó :

S nhỏ nhất \(\frac{a}{x}\)nhỏ nhất = x lớn nhất = \(D=M\)( M là điểm chính giữa của cung BC không chứa A )

HT

Mệt 

29 tháng 12 2021

undefined

Đây ạ

HT

@@@@@@@@@@@@

23 tháng 3 2019

B C A M D F E

a) Ta có: \(S_{\Delta ABC}=S_{\Delta MBC}+S_{\Delta MCA}+S_{\Delta MAB}\)

\(\Rightarrow S_{\Delta ABC}=\frac{1}{2}MD.BC+\frac{1}{2}ME.AC+\frac{1}{2}MF.AB\)

\(\Rightarrow S_{\Delta ABC}=\frac{1}{2}ax+\frac{1}{2}by+\frac{1}{2}cz\)

\(\Rightarrow S_{\Delta ABC}=\frac{1}{2}\left(ax+by+cz\right)\)

\(\Rightarrow S=\frac{1}{2}\left(ax+by+cz\right)\)

\(\Rightarrow2S=ax+by+cz\)

=> đpcm

b) Ta có: \(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(ax+by+cz\right)=\left(a^2+b^2+c^2\right)+\left(\frac{a}{x}.by+\frac{b}{y}.ax\right)\) \(+\left(by.\frac{c}{z}+cz.\frac{b}{y}\right)+\left(cz.\frac{a}{x}+ax.\frac{c}{z}\right)\)

\(=\left(a^2+b^2+c^2\right)+ab\left(\frac{y}{x}+\frac{x}{y}\right)+bc\left(\frac{y}{z}+\frac{z}{y}\right)+ca\left(\frac{z}{x}+\frac{x}{z}\right)\)

\(\ge a^2+b^2+c^2+2ab+2by+2ca=\left(a+b+c\right)^2\) 

(vì ta dễ chứng minh được \(\frac{x}{y}+\frac{y}{x}\ge2\) - tương tự với \(\frac{y}{z}+\frac{z}{y};\frac{z}{x}+\frac{x}{z}\))

Vậy \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\ge\frac{\left(a+b+c\right)^2}{\left(ax+by+cz\right)}=\frac{\left(a+b+c\right)^2}{2S}\)

Dấu "=" xảy ra <=> x = y = z

Vậy \(min\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)=\frac{\left(a+b+c\right)^2}{2S}\) 

10 tháng 1 2020

@Akai Haruma help me

10 tháng 1 2020

DD'//BC ở F???

18 tháng 5 2019

Gọi a là độ dài cạnh của tam giác ABC

+ Ta có : \(S_{AMB}+S_{BMC}+S_{AMC}=S_{ABC}\)

\(\Rightarrow\frac{1}{2}\cdot x\cdot a+\frac{1}{2}\cdot y\cdot a+\frac{1}{2}\cdot z\cdot a=\frac{1}{2}\cdot a\cdot h\)

\(\Rightarrow\frac{1}{2}a\left(x+y+z\right)=\frac{1}{2}a\cdot h\)

\(\Rightarrow x+y+z=h\)             ( do \(\frac{1}{2}a\ne0\) )

\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{1}{3}h^2\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

<=> M là giao điểm 3 đg phân giác của tam giác ABC