K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: M={90;93;96;99}

b: N={90;95;100}

Xét hiệu a2+b2+c2+m2+n2+p2 - (a+b+c+m+n+p)

=a(a-1)+b(b-1)+c(c-1)+m(m-1)+n(n-1)+p(p-1) \(⋮\)2

mà a2+b2+c2+m2+n2+p2\(\ge\)6 ( vì a,b,c,m,np nguyên dương)

=> a+b+c+m+n+p là hợp số

11 tháng 4 2018

Xét hiệu a2+b2+c2+m2+n2+p2  - (a+b+c+m+n+p)

=a(a-1)+b(b-1)+c(c-1)+m(m-1)+n(n-1)+p(p-1) ⋮ 2

mà a2+b2+c2+m2+n2+p2 ≥ 6 ( vì a,b,c,m,np nguyên dương)

=> a+b+c+m+n+p là hợp số 

25 tháng 2 2016

cho tam giác abc có ab<ac.tia phân giác của góc a cắt đường trung trực của bc tại i .qua i kẻ đường vuông gócvoi 2 cạnh của góc a ,cắt tia ab, ac theo thứ tư tại h và k ,chứng minh rằng   

a, AH=AK

b, bh=CK

C,AK=AC+AB/2,    ck=AC-AB/2

25 tháng 5 2016

m và n là số tự nhiên => m , n ≥ 0 

p là số nguyên tố 

Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\) <=> p2 = ( m – 1 ).( m + n ) 

Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2

Chú ý : m – 1< m + n (1) 

Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 (2) 

Từ (1) và (2) ta có m – 1 = 1 và m + n = p2. Khi đó m = 2 và tất nhiên 2 + n = p2

Vậy p2 = n + 2 (Đpcm).

25 tháng 5 2016

m và n là số tự nhiên => m , n ≥ 0 
p là số nguyên tố 
Thỏa mãn p/m1 =m+n/p  <=> p2 = ( m – 1 )( m + n ) 
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2
Chú ý : m – 1< m + n ( 1 ) 
Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 ( 2 ) 
Từ ( 1 ) và ( 2 ) ta có m – 1 = 1 và m + n = p2.
Khi đó m = 2 và tất nhiên 2 + n = p2
Do đó A = p2 - n = 2