Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\) <=> p2 = ( m – 1 ).( m + n )
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2
Chú ý : m – 1< m + n (1)
Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 (2)
Từ (1) và (2) ta có m – 1 = 1 và m + n = p2. Khi đó m = 2 và tất nhiên 2 + n = p2
Vậy p2 = n + 2 (Đpcm).
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
Thỏa mãn p/m−1 =m+n/p <=> p2 = ( m – 1 )( m + n )
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2
Chú ý : m – 1< m + n ( 1 )
Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 ( 2 )
Từ ( 1 ) và ( 2 ) ta có m – 1 = 1 và m + n = p2.
Khi đó m = 2 và tất nhiên 2 + n = p2
Do đó A = p2 - n = 2
Ta có: \(\frac{p}{m-n}=\frac{m+n}{p}\)
Theo tính chất tỉ lệ thức: \(p^2=\left(m-n\right)\left(m+n\right)=m^2-n^2\)
giả sử d = ƯCLN ( m , n ) với d \(\ge\) 1 thì m \(⋮\)d và n \(⋮\) d
suy ra : 3m \(⋮\) d , 2n \(⋮\) d
suy ra 3m - 2n = 1 \(⋮\) d
Bởi vì d \(\ge\)1 mà 1 d thì d = 1,
suy ra m và n nguyên tố cùng nhau
cho tam giác abc có ab<ac.tia phân giác của góc a cắt đường trung trực của bc tại i .qua i kẻ đường vuông gócvoi 2 cạnh của góc a ,cắt tia ab, ac theo thứ tư tại h và k ,chứng minh rằng
a, AH=AK
b, bh=CK
C,AK=AC+AB/2, ck=AC-AB/2