Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{x-1}{0-2}=\frac{1,2}{1,5}\)
\(\Leftrightarrow\frac{1-x}{2}=\frac{4}{5}\)
\(\Leftrightarrow5-5x=8\)
\(\Leftrightarrow x=-\frac{3}{5}\)
b) Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{4-6+6}=\frac{16}{4}=4\)
\(\Rightarrow\hept{\begin{cases}x=4\\y=8\\z=12\end{cases}}\)
Bài 1:
c) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Leftrightarrow\frac{y}{7}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)
d) \(x:y:z=3:5:2\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{5x-7y+5z}{15-35+10}=\frac{124}{-10}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{186}{5}\\y=-62\\z=-\frac{124}{5}\end{cases}}\)
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)
=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn
Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)
=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)
Vậy ..
\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)
Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)
1) Ta có: x/6 = y/3 = z/3 và 2x - 3y + 3z = 21
Aps dụng tính chất của dãy tỉ số bằng nhau:
x/6 = y/3 = z/3 = 2x/12 = 3y/9 = 3z/9 = (2x-3y+3z)/ (12 - 9 + 9) = 21/12 = 7/4
=> x/6 = 7/4 => x= 21/2
y/3 = 7/4 -> y= 21/4
z/3 = 7/4 -> z= 21/4
1) đề nó sao ý bạn , sao lại tìm z nữa lại 2/3 ?
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{-4}=\frac{4x}{4.2}=\frac{3y}{3.\left(-4\right)}=\frac{2z}{2.\left(-4\right)}=\frac{4x+3y+2z}{8+\left(-12\right)+\left(-8\right)}=\frac{1}{-12}=\frac{-1}{12}\)
\(\frac{x}{2}=\frac{-1}{12}\Rightarrow x=\frac{-1}{6}\)
\(\frac{y}{-3}=\frac{-1}{12}\Rightarrow y=\frac{1}{4}\)
\(\frac{z}{-4}=\frac{-1}{12}\Rightarrow z=\frac{1}{3}\)
Vậy x=-1/6 ; y=1/4 và z = 1/3
3) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-3}{5}\Rightarrow\frac{x+1+y+2+z-3}{3+4+5}=\frac{18+1+2-3}{12}=\frac{18}{12}=\frac{3}{2}\)
\(\frac{x+1}{3}=\frac{3}{2}\Rightarrow x=\frac{7}{2}\)
\(\frac{y+2}{4}=\frac{3}{2}\Rightarrow y=4\)
\(\frac{z-3}{5}=\frac{3}{2}\Rightarrow z=\frac{21}{2}\)
Vậy x=7/2 ; y=4 và z=21/2
4) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x-1+y-2+z-3}{3+4+5}=\frac{30-\left(1+2+3\right)}{12}=\frac{24}{12}=2\)
\(\frac{x-1}{3}=2\Rightarrow x=7\)
\(\frac{y-2}{4}=2\Rightarrow y=10\)
\(\frac{z-3}{5}=2\Rightarrow z=13\)
Vậy x=7 ; y=10 và z=13
tổng tỉ số là : 1 + 2 + 3 = 6
x = 30 : 6 x 1 = 5
y = 5 x 2 = 10
z = 5 x 3 = 15
Theo bài ra , ta có :
x - y + z = 30
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x-y+z}{1-2+3}=\frac{30}{2}=15\)
\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=15.2=30\\z=15.3=45\end{cases}}\)