K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2023

Từ 3 phương trình trên

\(\left(x+y+z\right)=\dfrac{-5}{x}=\dfrac{9}{y}=\dfrac{5}{z}=\dfrac{-5+9+5}{x+y+z}=\dfrac{9}{x+y+z}\)

\(\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\left(x+y+z\right)=\pm3\)

+ Với \(x+y+z=3\) Thay vào từng phương trình ta có

\(x=-\dfrac{5}{3};y=3;z=\dfrac{5}{3}\)

+ Với \(x+y+z=-3\) Thay vào từng phương trình có

\(x=\dfrac{5}{3};y=3;z=-\dfrac{5}{3}\)

11 tháng 7 2023

Sorry trường hợp thứ 2 \(y=-3\)

21 tháng 3 2016
Mk đây mới học lớp 5. Chưa thể làm bài lớp 7 đc đâu. Thôi thì tặng bn bài thơ. Để làm câu trả lời hay nhất nè
28 tháng 10 2018

ta có :\(\dfrac{y+z-2015x}{x}=\dfrac{z+x-2015y}{y}=\dfrac{z+y-2015z}{z}\)

=>\(\left(\dfrac{y+z-2015}{x}+2016\right)=\left(\dfrac{z+x-2015y}{y}+2016\right)=\left(\dfrac{x+y-2015z}{z}+2016\right)\)

(=)\(\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\)

*Nếu x+y+z\(\ne\)0

=>\(\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

=>\(P=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)=1.1.1=1

*Nếu x+y+z=0

=>x=y=z

=>\(P=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)=2.2.2=8

12 tháng 11 2018

Thank you!haha

26 tháng 12 2015

Ta có:

\(\frac{x-1}{2}\) =\(\frac{y-2}{3}\)=\(\frac{z-3}{4}\)=k =>x=2k+1

                                          y=3k+2

                                          z=4k+3

                     Thay vào: x  -  2y  + 3z  =  -10

                              (2k+1)-2x(3k+2)+3x(4k+3)= -10

                              (2k+1)-(6k+4)+(12k+9)= -10

                               (2k-6k+12k)+(1-4+9) = -10

                                      8k    +  6             = -10  

                                              8k               = -16

                                                k               = -2

                                   =>    x = 2x(-2)+1 = -3

                                           y = 3x(-2)+2 = -4

                                           z =4x(-2)+3 =  -5

                                                Vậy .............

                          Nếu đúng nhớ **** cho mk nha!

 

 

 

 

26 tháng 12 2015

Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-2y+z}{2-3+4}=\frac{-10}{3}\)

Mặt khác: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x+y+z-6}{9}\)

=> \(\frac{x+y+z-6}{9}=\frac{-10}{3}\)

=> x + y + z - 6 = -10.9 : 3 = -30

=> x + y + z = -24

13 tháng 3 2020

Ta có:

\(\frac{x+y}{3}=\frac{5-z}{1}=\frac{y+z}{2}=\frac{9+y}{5}=k\left(1\right)\)

\(\frac{\left(x+y\right)+\left(5-z\right)+\left(y+z\right)+\left(9+y\right)}{3+1+2+5}=\frac{x+y-4}{1}\)

=> \(\hept{\begin{cases}x+y-4=k\\x+y=3k\end{cases}}\)=> \(k+4=x+y\)

=> \(4+k=3k\Rightarrow4=2k\Rightarrow k=2\)

=> \(5-z=k\Rightarrow z=5-k=5-2=3\)

\(9+y=5k\Rightarrow y=5k-9=10-9=1\)

\(x+y=3k\Rightarrow x=3k-y=6-1=5\)

Từ (1) => \(\hept{\begin{cases}x=5\\y=1\\z=3\end{cases}}\)

13 tháng 3 2020

\(\frac{x+y}{5-z}=\frac{3}{1}\Leftrightarrow x+y=15-3z\) (1)

\(\frac{5-z}{y+z}=\frac{1}{2}\Leftrightarrow10-2z=y+z\Leftrightarrow y=10-3z\) (2)

\(\frac{y+z}{y+9}=\frac{2}{5}\Leftrightarrow5y+5z=2y+18\Leftrightarrow3y=18-5z\) (3)

Tù (2) và (3), ta có HPT: \(\hept{\begin{cases}y=10-3z\\3y=18-5z\end{cases}}\)<=> \(\hept{\begin{cases}y+3z=10\\3y+5z=18\end{cases}}\)

Giải HPT đó, ta có: \(y=1\)\(z=3\)

Thay \(y=1\) và \(z=3\) vào PT(1), ta có: \(x=15-3\cdot3-1=15-9-1=5\)

Vậy \(x=5\)\(y=1\) và \(z=3\).