Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ 3 phương trình trên
\(\left(x+y+z\right)=\dfrac{-5}{x}=\dfrac{9}{y}=\dfrac{5}{z}=\dfrac{-5+9+5}{x+y+z}=\dfrac{9}{x+y+z}\)
\(\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\left(x+y+z\right)=\pm3\)
+ Với \(x+y+z=3\) Thay vào từng phương trình ta có
\(x=-\dfrac{5}{3};y=3;z=\dfrac{5}{3}\)
+ Với \(x+y+z=-3\) Thay vào từng phương trình có
\(x=\dfrac{5}{3};y=3;z=-\dfrac{5}{3}\)
ta có :\(\dfrac{y+z-2015x}{x}=\dfrac{z+x-2015y}{y}=\dfrac{z+y-2015z}{z}\)
=>\(\left(\dfrac{y+z-2015}{x}+2016\right)=\left(\dfrac{z+x-2015y}{y}+2016\right)=\left(\dfrac{x+y-2015z}{z}+2016\right)\)
(=)\(\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\)
*Nếu x+y+z\(\ne\)0
=>\(\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)
=>\(P=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)=1.1.1=1
*Nếu x+y+z=0
=>x=y=z
=>\(P=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)=2.2.2=8
Ta có:
\(\frac{x-1}{2}\) =\(\frac{y-2}{3}\)=\(\frac{z-3}{4}\)=k =>x=2k+1
y=3k+2
z=4k+3
Thay vào: x - 2y + 3z = -10
(2k+1)-2x(3k+2)+3x(4k+3)= -10
(2k+1)-(6k+4)+(12k+9)= -10
(2k-6k+12k)+(1-4+9) = -10
8k + 6 = -10
8k = -16
k = -2
=> x = 2x(-2)+1 = -3
y = 3x(-2)+2 = -4
z =4x(-2)+3 = -5
Vậy .............
Nếu đúng nhớ **** cho mk nha!
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-2y+z}{2-3+4}=\frac{-10}{3}\)
Mặt khác: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x+y+z-6}{9}\)
=> \(\frac{x+y+z-6}{9}=\frac{-10}{3}\)
=> x + y + z - 6 = -10.9 : 3 = -30
=> x + y + z = -24
Ta có:
\(\frac{x+y}{3}=\frac{5-z}{1}=\frac{y+z}{2}=\frac{9+y}{5}=k\left(1\right)\)
\(\frac{\left(x+y\right)+\left(5-z\right)+\left(y+z\right)+\left(9+y\right)}{3+1+2+5}=\frac{x+y-4}{1}\)
=> \(\hept{\begin{cases}x+y-4=k\\x+y=3k\end{cases}}\)=> \(k+4=x+y\)
=> \(4+k=3k\Rightarrow4=2k\Rightarrow k=2\)
=> \(5-z=k\Rightarrow z=5-k=5-2=3\)
\(9+y=5k\Rightarrow y=5k-9=10-9=1\)
\(x+y=3k\Rightarrow x=3k-y=6-1=5\)
Từ (1) => \(\hept{\begin{cases}x=5\\y=1\\z=3\end{cases}}\)
\(\frac{x+y}{5-z}=\frac{3}{1}\Leftrightarrow x+y=15-3z\) (1)
\(\frac{5-z}{y+z}=\frac{1}{2}\Leftrightarrow10-2z=y+z\Leftrightarrow y=10-3z\) (2)
\(\frac{y+z}{y+9}=\frac{2}{5}\Leftrightarrow5y+5z=2y+18\Leftrightarrow3y=18-5z\) (3)
Tù (2) và (3), ta có HPT: \(\hept{\begin{cases}y=10-3z\\3y=18-5z\end{cases}}\)<=> \(\hept{\begin{cases}y+3z=10\\3y+5z=18\end{cases}}\)
Giải HPT đó, ta có: \(y=1\), \(z=3\)
Thay \(y=1\) và \(z=3\) vào PT(1), ta có: \(x=15-3\cdot3-1=15-9-1=5\)
Vậy \(x=5\), \(y=1\) và \(z=3\).