K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
30 tháng 4 2021

\(M+N=\frac{7a-1}{4}+\frac{5a+3}{12}=\frac{13a}{6}\)

Với \(a=6k,k\inℤ\)thì: \(N=\frac{30k+3}{12}\)không là số nguyên do tử số là số lẻ, mẫu số là số chẵn.

Với \(a\ne6k,k\inℤ\)thì tổng của \(M+N\)không là số nguyên nên có đpcm. 

1 tháng 5 2019

CÂU 1                                                                          GIẢI:

Để P có giá trị nguyên thì:                2n - 5  chia hết cho 3n - 2 =>3.(2n - 5) chia hết cho 3n - 2

                                                                                                      <=>6n - 15 chia hết cho 3n - 2

   Ta có:6n - 15=(6n - 4) - 11

                       =2.(3n - 2) - 11

Vậy 2.(3n - 2) - 11 chia hết cho 3n - 2

Mà 2.(3n - 2) chia hết cho 3n - 2 nên 11 chia hết cho 3n - 2

=>3n - 2 thuộc Ư(11)={1;-1;11;-11}

=>3n thuộc{3;1;13;-9}

Mà n thuộc N=>3n chia hết cho 3

=>3n thuộc{3;-9}

Vậy n thuộc{1;-3}

CÂU 2                                                                         GIẢI:

M và N ko cùng có giá trị nguyên với cùng 1 giá trị nguyên của a khi M - N=1

Xét hiệu:M - N

TA CÓ:M=3.(7a - 1)/12

            M=21a - 3/12

=>M - N=21a - 3/12 - 5a+3/12

             =16a - 6/12

Vì a thuộc N=>16a chia hết cho 4(1)

                        Mà 6 ko chia hết cho 4(2)

Từ (1) và (2)=>16a - 6 ko chia hết cho 4

                        Mà 12 chia hết cho 4=>M - N khác 0

VẬY M VÀ N KO THỂ CÙNG 1 GIÁ TRỊ NGUYÊN VỚI CÙNG 1 GIÁ TRỊ NGUYÊN a

tk cho công sức của mk nha!mơn nhìu!!!!!^-^

18 tháng 4 2018

Ta có : 

\(M=\frac{n+1}{n+1}-\frac{3-8n}{n+1}+\frac{8}{n+1}\)

\(M=\frac{n+1-3+8n+8}{n+1}\)

\(M=\frac{\left(n+8n\right)+\left(1-3+8\right)}{n+1}\)

\(M=\frac{9n+6}{n+1}\)

\(M=\frac{9n+9-3}{n+1}\)

\(M=\frac{9n+9}{n+1}-\frac{3}{n+1}\)

\(M=\frac{9\left(n+1\right)}{n+1}-\frac{3}{n+1}\)

\(M=9-\frac{3}{n+1}\)

Để M là số nguyên thì \(\frac{3}{n+1}\) phải là số nguyên hay \(3\) chia hết cho \(n+1\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Suy ra : 

\(n+1\)\(1\)\(-1\)\(3\)\(-3\)
\(n\)\(0\)\(-2\)\(2\)\(-4\)

Vậy để M là số nguyên thì \(n\in\left\{-4;-2;0;2\right\}\)

Chúc bạn học tốt ~ ( chỗ nào ko hiểu thì hỏi nhé ) 

Mơn bn nhìu!

16 tháng 3 2018

Giải từng bài 

Bài 1 : 

Ta có : 

\(\frac{23+n}{40+n}=\frac{3}{4}\)

\(\Leftrightarrow\)\(4\left(23+n\right)=3\left(40+n\right)\)

\(\Leftrightarrow\)\(92+4n=120+3n\)

\(\Leftrightarrow\)\(4n-3n=120-92\)

\(\Leftrightarrow\)\(n=28\)

Vậy số cần tìm là \(n=28\)

Chúc bạn học tốt ~ 

16 tháng 3 2018

Bài 2 : 

\(a)\) Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(12n+1;30n+2\right)=\left\{1;-1\right\}\)

Vậy \(A=\frac{12n+1}{30n+2}\) là phân số tối giản với mọi giá trị nguyên n 

Chúc bạn học tốt ~ 

16 tháng 9 2021

n+1 và 3n+4 là 2 số nguyên tố cùng nhau khi ƯCLN(n+1;3n+4)=1

Gọi ƯCLN(n+1;3n+4)=d

=> [(n+1)+(3n+4)] chia hết cho d

=> 1 chia hết cho d => d=1

=> ƯCLN(n+1;3n+4)=1

Vậy n+1 và 3n+4 là 2 số nguyên tố cùng nhau