K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

CÂU 1                                                                          GIẢI:

Để P có giá trị nguyên thì:                2n - 5  chia hết cho 3n - 2 =>3.(2n - 5) chia hết cho 3n - 2

                                                                                                      <=>6n - 15 chia hết cho 3n - 2

   Ta có:6n - 15=(6n - 4) - 11

                       =2.(3n - 2) - 11

Vậy 2.(3n - 2) - 11 chia hết cho 3n - 2

Mà 2.(3n - 2) chia hết cho 3n - 2 nên 11 chia hết cho 3n - 2

=>3n - 2 thuộc Ư(11)={1;-1;11;-11}

=>3n thuộc{3;1;13;-9}

Mà n thuộc N=>3n chia hết cho 3

=>3n thuộc{3;-9}

Vậy n thuộc{1;-3}

CÂU 2                                                                         GIẢI:

M và N ko cùng có giá trị nguyên với cùng 1 giá trị nguyên của a khi M - N=1

Xét hiệu:M - N

TA CÓ:M=3.(7a - 1)/12

            M=21a - 3/12

=>M - N=21a - 3/12 - 5a+3/12

             =16a - 6/12

Vì a thuộc N=>16a chia hết cho 4(1)

                        Mà 6 ko chia hết cho 4(2)

Từ (1) và (2)=>16a - 6 ko chia hết cho 4

                        Mà 12 chia hết cho 4=>M - N khác 0

VẬY M VÀ N KO THỂ CÙNG 1 GIÁ TRỊ NGUYÊN VỚI CÙNG 1 GIÁ TRỊ NGUYÊN a

tk cho công sức của mk nha!mơn nhìu!!!!!^-^

DD
30 tháng 4 2021

\(M+N=\frac{7a-1}{4}+\frac{5a+3}{12}=\frac{13a}{6}\)

Với \(a=6k,k\inℤ\)thì: \(N=\frac{30k+3}{12}\)không là số nguyên do tử số là số lẻ, mẫu số là số chẵn.

Với \(a\ne6k,k\inℤ\)thì tổng của \(M+N\)không là số nguyên nên có đpcm. 

15 tháng 7 2016

a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê

<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}

<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}

Bạn tự tính giá trị với mỗi n

b) Tương tự

15 tháng 7 2016

Thank you các bạn nha !

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

16 tháng 12 2016

\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3-\frac{5}{n-1}\)

=>n-1 \(\in\) Ư(5) = {-5;-1;1;5}

n-1-5-115
n-4026

Vậy n = {-4;0;2;6}

S = 5+52+53+...+52006

5S = 52+53+54+...+52007

5S - S = (52+53+54+...+52007) - (5+52+53+...+52006)

4S = 52007 - 5

S = \(\frac{5^{2007}-5}{4}\)

 

NM
10 tháng 5 2021

Ta có 

\(A=\frac{3n+4}{n-1}=3+\frac{7}{n-1}\)là số nguyên khi n-1 là ước của 7 hay

\(n-1\in\left\{\pm1,\pm7\right\}\Rightarrow n\in\left\{-6,0,2,8\right\}\)

10 tháng 5 2021

Để A có  giá trị nguyên

<=> 3n + 4 ⋮  n - 1

=> ( 3n - 3 ) + 7 ⋮  n - 1

=> 3 . ( n - 1 ) + 7 ⋮  n - 1

vì 3.(n-1) + 7 chia hết cho n-1 và 3.(n-1) chia hết cho n-1 nên 7 chia hết cho n-1 

=> n - 1 ∈  Ư(7) = { - 7 ; -1 ; 1 ; 7 }

Ta có bảng sau :

n-11-1-77
n20-68

mọi giá trị n đều thuộc z (chọn)

 Vậy x  ∈ { - 6 ; 0 ; 2 ; 8 }