Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\varphi=\varphi_u-\varphi_i=0-\left(-\frac{\pi}{4}\right)=\frac{\pi}{4}\)
\(\tan\varphi=\frac{Z_L-Z_C}{R}=1\Rightarrow Z_L-Z_C=R\)
\(\Rightarrow Z=\sqrt{R^2+\left(Z_L-Z_C\right)^2}=R\sqrt{2}\)
Mà \(Z=\frac{U}{I}=\frac{200}{2}=100\Rightarrow R=\frac{100}{\sqrt{2}}=50\sqrt{2}\)
\(Z_L=L\omega=\frac{25.10^{-2}}{\pi}.100\pi=25\Omega.\)
Mach co r, R va ZL khi đó \(Z=\sqrt{\left(R+r\right)^2+Z_L^2}=\sqrt{\left(10+15\right)^2+25^2}=25\sqrt{2}\Omega.\)
Cường độ dòng điện cực đại \(I_0=\frac{U_0}{Z}=\frac{100\sqrt{2}}{25\sqrt{2}}=4A.\)
Độ lệch pha giữa u và i được xác định thông qua \(\tan\varphi=\frac{Z_L}{R+r}=\frac{25}{15+10}=1\)\(\Rightarrow\varphi=\frac{\pi}{4}.\)
hay \(\varphi_u-\varphi_i=\frac{\pi}{4}.\) mà \(\varphi_u=0\Rightarrow\varphi_i=-\frac{\pi}{4}.\)
=> phương trình dao động của cường độ dòng xoay chiều là
\(i=4\cos\left(100\pi t-\frac{\pi}{4}\right)A.\)
Cường độ dòng hiệu dụng: \(I=\dfrac{U}{Z}\)
Ta có: \(I_1=I_2\)
\(\Rightarrow \dfrac{U}{Z_1}=\dfrac{U}{Z_2}\)
\(\Rightarrow Z_1=Z_2\)
\(\Rightarrow \sqrt{R^2+(Z_{L1}-Z_{C1})^2}=\Rightarrow \sqrt{R^2+(Z_{L2}-Z_{C2})^2}\)
\(\Rightarrow Z_{L1}-Z_{C1}=Z_{C2}-Z_{L2}\)
\(\Rightarrow Z_{L1}+Z_{L2}=Z_{C1}+Z_{C2}\)
\(\Rightarrow \omega_1.L+\omega_2.L=\dfrac{1}{\omega_1C}+\dfrac{1}{\omega_2C}\)
\(\Rightarrow (\omega_1+\omega_2)L=\dfrac{1}{C}.\dfrac{\omega_1+\omega_2}{\omega_1.\omega_2}\)
\(\Rightarrow \omega_1.\omega_2=\dfrac{1}{LC}\)
Chọn C
Cường độ cực đại: \(I_0=\dfrac{U_{0R}}{R}=2,5\sqrt 2 (A)\)
\(\varphi _i=\varphi_{uR}=0\)
\(Z_L=\omega L = 60\Omega\)
\(Z_C=\dfrac{1}{\omega C}=100\Omega\)
Tổng trở \(Z=\sqrt{40^4+(60-100)^2}=40\sqrt2\Omega\)
Điện áp cực đại hai đầu mạch: \(U_0=I_0.Z=200V\)
Độ lệch pha của u với i: \(\tan\varphi = \dfrac{Z_L-Z_C}{R}=-1\Rightarrow\varphi=-\dfrac{\pi}{4}\)
\(\Rightarrow \varphi_u=-\dfrac{\pi}{4}\)
Vậy biểu thức của hiệu điện thế: \(u=200\cos(100\pi t-\dfrac{\pi}{4})V\)