\(\sqrt{3}\) , hiệu điện thế đặt vào đoạn mạch có dạng:u...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

bài 2: Do mạch RLC có R thay đổi mà R=R1 và R=R2  thì P1=P2 thỏa mãn

R1.R2=( ZL-ZC)2

=> (ZL-ZC)2=90.160= 14400=> ZL-ZC= 120

                                                      hoặc =-120

Có zc=100 ôm=> ZL= 120+100=320 ôm(thỏa mãn)

                          ZL= -120+100=-20(loại)

Vậy L=ZL / w= 320/100pi= 3.2/pi (H)

12 tháng 10 2017

Cường độ dòng hiệu dụng: \(I=\dfrac{U}{Z}\)

Ta có: \(I_1=I_2\)

\(\Rightarrow \dfrac{U}{Z_1}=\dfrac{U}{Z_2}\)

\(\Rightarrow Z_1=Z_2\)

\(\Rightarrow \sqrt{R^2+(Z_{L1}-Z_{C1})^2}=\Rightarrow \sqrt{R^2+(Z_{L2}-Z_{C2})^2}\)

\(\Rightarrow Z_{L1}-Z_{C1}=Z_{C2}-Z_{L2}\)

\(\Rightarrow Z_{L1}+Z_{L2}=Z_{C1}+Z_{C2}\)

\(\Rightarrow \omega_1.L+\omega_2.L=\dfrac{1}{\omega_1C}+\dfrac{1}{\omega_2C}\)

\(\Rightarrow (\omega_1+\omega_2)L=\dfrac{1}{C}.\dfrac{\omega_1+\omega_2}{\omega_1.\omega_2}\)

\(\Rightarrow \omega_1.\omega_2=\dfrac{1}{LC}\)

Chọn C

8 tháng 12 2016

R1 + R2 = U2/P => U=120 V

R1R2 =(ZL-ZC)2=5184

Cos$1 = R1/(R12+R1R2)0.5=0.6

Cos$2=R2/(R22+R1R2)0.5=0.8

5 tháng 7 2016

\(Z_L=L\omega=\frac{25.10^{-2}}{\pi}.100\pi=25\Omega.\)

Mach co r, R va ZL khi đó \(Z=\sqrt{\left(R+r\right)^2+Z_L^2}=\sqrt{\left(10+15\right)^2+25^2}=25\sqrt{2}\Omega.\)

Cường độ dòng điện cực đại \(I_0=\frac{U_0}{Z}=\frac{100\sqrt{2}}{25\sqrt{2}}=4A.\)

Độ lệch pha giữa u và i được xác định thông qua \(\tan\varphi=\frac{Z_L}{R+r}=\frac{25}{15+10}=1\)\(\Rightarrow\varphi=\frac{\pi}{4}.\)

hay \(\varphi_u-\varphi_i=\frac{\pi}{4}.\) mà \(\varphi_u=0\Rightarrow\varphi_i=-\frac{\pi}{4}.\)

=> phương trình dao động của cường độ dòng xoay chiều là

\(i=4\cos\left(100\pi t-\frac{\pi}{4}\right)A.\)

19 tháng 2 2016

Đáp án C.
lúc đầu ta có :
UMB=2UR => ZMB=2R <=> ZC=\(\sqrt{3}\)R mà C=\(\frac{L}{R^2}\) => ZL=\(\frac{R}{\sqrt{3}}\)
lúc sau ta có Uc' max :
Zc'.ZL=R2\(Z^2_L\) => Zc'=\(\frac{4R}{\sqrt{3}}\)
\(\text{tanφ}=\frac{Z_L-Z_C}{R}\Rightarrow\tan\varphi=-\sqrt{3}\Rightarrow\varphi=-\frac{\pi}{3}\)