Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : M = 1+2+22+23+...+250
=> 2M = 2+22+23+...+251
=> 2M - M = 251 - 1
=> M = 251 - 1
Mà N = 251 => M < N
Ta có
M = 1 + 2 + 22 + ... + 250
2M = 2 + 22 + 23 + ... + 251
2M - M = (2 + 22 + 23 + ... + 251) - (1 + 2 + 22 + ... + 250)
M = 251 - 1
Vì 251 - 1 < 251 nên M < N
Vậy M < N
Ủng hộ mk nha !!! ^_^
\(A=1+2+2^2+2^3+...+2^{50}\)
\(2A=2+2^2+2^3+2^4+....+2^{51}\)
\(=>2A-A=\left(2+2^2+2^3+2^4+...+2^{51}\right)-\left(1+2+2^2+2^3+....+2^{50}\right)\)
\(=>A=2^{51}-1< 2^{51}=B=>A< B\)
1)
\(\left(3^3\right)^3\)=\(3^{3\cdot3}=3^9\)
\(\left(a^m\right)^n=a^{m\cdot n}\)
2)
\(3^{34}=3^{2\cdot17}=\left(3^2\right)^{17}=9^{17}\)
\(2^{51}=2^{3\cdot17}=\left(2^3\right)^{17}=8^{17}\)
Vì \(9^{17}>8^{17}\)
Nên\(3^{34}>2^{51}\)
Ta có:
\(N=\left(1+2\right)\left(2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{2008}+1\right)\)
\(\Leftrightarrow N=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{2008}+1\right)\)
\(\Leftrightarrow N=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{2008}+1\right)\)
\(\Leftrightarrow N=\left(2^8-1\right)...\left(2^{2008}+1\right)\)
\(\Leftrightarrow N=2^{4016}-1>2^{2016}=M\)
2M = 2+2^3+2^4+......+2^51
M = 2M - M = 2+2^3+2^4+.....+2^51 - (1+2^2+2^3+.....+2^51)
= 2+2^51 - 1 - 2^2
= 2^51 - 3
=> M < N
Tk mk nha
\(M>N\)