Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=\left(x^3.x^3.x^2\right).\left(y.y^4\right).\left(\frac{2}{5}.\frac{-5}{4}\right)\)
\(A=x^8.y^5.\left(-\frac{1}{2}\right)\)
\(B=\left(x^5.x.x^2\right).\left(y^4.y^2.y\right).\left(\frac{-3}{4}.\frac{-8}{9}\right)\)
\(B=x^8.y^7.\frac{2}{3}\)
Bài 2:
\(A=\left(15.x^2.y^3-12.x^2.y^3\right)+\left(11x^3.y^2-8.x^3.y^2\right)+\left(7x^2-12x^2\right)\)
\(A=3.x^2.y^3+2.x^3.y^2-5x^2\)
B tương tự nhé, đáp án là (theo mình)
\(B=\frac{5}{2}.x^5.y+\frac{7}{3}.x.y^4-\frac{1}{4}.x^2.y^3\)
a) $(\dfrac{-1}{3}xy)(3x^2yz^2)$
$=\dfrac{-1}{3}.3.x^2.x.y.y.z^2$
$=-1x^3y^2z^2$
Hệ số của đơn thức : -1
b) $-54y^2.b.x=-54bxy^2$
Hệ số của đơn thức : -54b
c) $-2x^2y.(\dfrac{-1}{2})^2x(y^2z)^3$
$=-2x^2y.\dfrac{1}{4}xy^6z^3$
$=-2.\dfrac{1}{4}.x^2.x.y.y^6.z^3$
$=\dfrac{-1}{2}x^3y^7z^3$
Hệ số của đơn thức : $\dfrac{-1}{2}$
a) \(\begin{cases}\left(x+2\right)^2\ge0\\\left(y-\frac{1}{5}\right)^2\ge0\end{cases}\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10=-10\)hay \(C\ge-10\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
Vậy GTNN C là -10 khi \(\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}.}\)
b)\(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0+5=5\)
\(\Rightarrow\frac{4}{\left(2x-3\right)^2-5}\le\frac{4}{5}\Leftrightarrow D\le\frac{4}{5}\)
Dấu "=" xảy ra khi:
\(\left(2x-3\right)^2=0\Rightarrow2x-3=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)
Vậy GTLN D là \(\frac{4}{5}\)khi \(x=\frac{3}{2}.\)
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
\(\Rightarrow x;1-2y\in U\left(40\right)\)
\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Mà 1-2y lẻ nên:
\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)
b tương tự.
c) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)
d tương tự
Bài 1
A = \(\frac{17}{3}\)a\(x^2y^2+2x^2y^2\)
a) A \(\ge0\Leftrightarrow=\frac{17}{3}ax^2y^2+2x^2y^2\ge0\)
\(Taco:2x^2y^2\ge0;17x^2y^2\ge0\)
=> Để A \(\ge0\) thì a\(\ge0\)
b) Tương tự , ta có giá trị a thỏa mãn là
\(a\le0\)
c) Với a = 3 thì A \(=19x^2y^2=171\)
\(\Rightarrow x^2y^2=9\)
\(\Rightarrow\left[{}\begin{matrix}xy=3\\xy=-3\end{matrix}\right.\)
Vậy các cặp số x, y thỏa mãn là \(\left(x;y\right)\in\left\{x;y|xy=3\right\}\) hoặc
\(\left(x;y\right)\in\left\{x;y|xy=-3\right\}\)
Bài 2
a)B \(\ge0\Leftrightarrow5ax^2y^2+3x^2y^2\ge0\)
Ta có
\(5x^2y^2\ge0;x^2y^2\ge0\)
=> B \(\ge0\) khi \(a\ge0\)
b) Tương tự , giá trị cần tìm là a\(\le0\)
c) Thay a = 2 , ta có
B \(=-10x^2y^2+3x^2y^2=-28\Rightarrow-7x^2y^2=-28\)
\(\Rightarrow x^2y^2=4\)
\(\Rightarrow\left\{{}\begin{matrix}xy=2\\xy=-2\end{matrix}\right.\)
Vậy các cặp số (x;y) thỏa mãn là (x;y ) \(\in\left\{x;y|xy=2\right\}\)
Hoặc \(\left(x;y\right)\in\left\{x;y|xy=-2\right\}\)