Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\left\{\begin{matrix} 3a+b-c=x\\ 3b+c-a=y\\ 3c+a-b=z\end{matrix}\right.\)
Khi đó, điều kiện đb tương đương với:
\((x+y+z)^3=24+x^3+y^3+z^3\Leftrightarrow 3(x+y)(y+z)(x+z)=24\)
\(\Leftrightarrow 3(2a+4b)(2b+4c)(2c+4a)=24\)
\(\Leftrightarrow (a+2b)(b+2c)(c+2a)=1\)
Do đó ta có đpcm.
2 ) b )
\(a+b+c+d=0\)
\(\Leftrightarrow a+b=-\left(c+d\right)\)
\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a=-c^3-3c^2d-3d^2c-d^3\)
\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a+c^3+3c^2d+3d^2c+d^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\) \(\left(đpcm\right)\)
tự làm là hạnh phúc của mỗi công dân.