Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: Ta có: ADHE là hình chữ nhật
=>AD//HE và AD=HE
Ta có: AD//HE
F\(\in\)HE
Do đó: AD//HF
Ta có: AD=HE
HE=EF
Do đó: AD=EF
Xét tứ giác ADEF có
AD//EF
AD=EF
Do đó: ADEF là hình bình hành
c: ta có: AEHD là hình chữ nhật
=>\(\widehat{AED}=\widehat{AHD}\)
mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{ACB}\right)\)
nên \(\widehat{AED}=\widehat{ABC}\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Ta có: MA=MC
=>\(\widehat{MAC}=\widehat{MCA}\)
Ta có: \(\widehat{AED}+\widehat{MAC}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AM\(\perp\)ED
mà ED//AF(ADEF là hình bình hành)
nên AM\(\perp\)AF
a) Tứ giác ADHE là hình chữ nhật.
- Vì AD vuông góc với AB và HE vuông góc với AC (do HD và HE lần lượt là đường cao của tam giác ABC), nên ADHE là hình chữ nhật.
b) Lấy điểm F sao cho E là trung điểm của HF.
- Vì E là trung điểm của HF, nên EF = FH.
- Ta cũng có HE = EA (do E là trung điểm của HF và EA).
- Từ đó, ta có EF = FH = HE = EA.
- Vậy, tứ giác ADEF có các cạnh đối diện bằng nhau, là đặc điểm của hình bình hành.
c) Gọi M là trung điểm của BC. Chúng ta cần chứng minh AM vuông góc với AF.
- Ta biết rằng E là trung điểm của HF (theo phần b).
- Vì M là trung điểm của BC, nên BM = MC.
- Từ đó, ta có AM = BM = MC.
- Vì EF = FH = HE = EA (theo phần b), nên tứ giác ADEF là hình bình hành.
- Do đó, ta có AF song song với DE.
- Vì AM = MC và AF song song với DE, nên AM vuông góc với AF.
Vậy, ta đã chứng minh được AM vuông góc với AF.
Hướng giải:
a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật
b) C/m IN là đg tb của tam giác ABC => NA = NC
Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)
*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải.
a: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{1}{2}BC\)
DE//BC
mà H\(\in\)BC
nên DE//CH
Xét tứ giác DECH có DE//CH
nên DECH là hình thang
Ta có: ΔHAB vuông tại H
mà HD là đường trung tuyến
nên \(HD=DA=DB=\dfrac{AB}{2}\)
Ta có: ΔHAC vuông tại H
mà HE là đường trung tuyến
nên \(HE=AE=EC=\dfrac{AC}{2}\)
Xét ΔEAD và ΔEHD có
EA=EH
DA=DH
ED chung
Do đó: ΔEAD=ΔEHD
=>\(\widehat{EAD}=\widehat{EHD}=90^0\)
Xét tứ giác ADHE có
\(\widehat{DAE}+\widehat{DHE}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp
b: Xét tứ giác AHCF có
E là trung điểm chung của AC và HF
=>AHCF là hình bình hành
Hình bình hành AHCF có \(\widehat{AHC}=90^0\)
nên AHCF là hình chữ nhật
c) \(\widehat{AEF}=\widehat{EAH}=90^0-\widehat{ABH}=\widehat{ACB}\)
\(\Rightarrow\)△AFE∼△ABC (g-g)
\(\Rightarrow\dfrac{AF}{AB}=\dfrac{AE}{AC}\Rightarrow AB.AE=AC.AF\).
d) \(\widehat{CAM}=90^0-\widehat{AFE}=90^0-\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\)△ACM cân tại M \(\Rightarrow MA=MC\left(1\right)\)
\(\widehat{BAM}=90^0-\widehat{AEF}=90^0-\widehat{ACB}=\widehat{ABC}\)
\(\Rightarrow\)△ABM cân tại M \(\Rightarrow MA=MB\left(2\right)\)
-Từ (1) và (2) suy ra: \(MB=MC\) nên M là trung điểm BC.
e) \(\dfrac{S_{AFE}}{S_{ABC}}=\left(\dfrac{EF}{BC}\right)^2\)
\(\Rightarrow\dfrac{\dfrac{1}{2}S_{AEHF}}{2S_{AEHF}}=\left(\dfrac{EF}{BC}\right)^2\)
\(\Rightarrow\dfrac{1}{4}=\left(\dfrac{EF}{BC}\right)^2\Rightarrow\dfrac{EF}{BC}=\dfrac{AH}{BC}=\dfrac{1}{2}\)
\(\Rightarrow H\equiv M\)
\(\Rightarrow\)△ABC vuông cân tại A.
a,
GT KL tự làm
b, AM=1/2BC=5cm
c,Xét tứ giác AEMF có 3 góc :\(MEA=EAF=AFM=90^o\)
do đó đó AEMF là hình chữ nhật
a) Xét ΔNIM vuông tại I có : IH là đường trung tuyến
→ IH = \(\dfrac{1}{2}MN=\dfrac{1}{2}.12=6\)cm
b) Xét tứ giác IEFH có : \(\widehat{EIF}=\widehat{IFH\:}=\widehat{IEH}=90\)
→ IEHF là hình chữ nhật ( DHNB hình chữ nhật )