Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình
nối MP
Xét t/g MNP có: AM=AN(gt),BN=BP(gt)
=>AB là đường tb của t/g MNP
=>AB//MP và AB=1/2MP (1)
Xét t/g MQP có: MD=DQ(gt),QC=CP(gt)
=>CD là đường tb của t/g MQP
=.CD//MP và CD=1/2MP(2)
Từ (1) và (2) => AB=CD (3)
Lại có:AB//MP, CD//MP
=>AB//CD (4)
Từ (3)và (4) => tứ giác ABCD là HBH
Xét ΔMQN có
E là trung điểm của MN
H là trung điểm của MQ
Do đó: EH là đường trung bình của ΔMQN
Suy ra: EH//NQ và \(EH=\frac{NQ}{2}\left(1\right)\)
Xét ΔQPN có
F là trung điểm của NP
G là trung điểm của GP
Do đó: FG là đường trung bình của ΔQPN
Suy ra: FG//NQ và\(FG=\frac{NQ}{2}\left(2\right)\)
Từ (1)và (2) suy ra EH//GF và EH=GF
hay EHGF là hình bình hành
Giải
Nối M với P và nối N với Q
Xét tam giác QMP có: \(\left \{ {{\text{H là trung điểm QM (gt)}} \atop {\text{G là trung điểm QP (gt)}}} \right.\)
Do đó HG là đường trung bình của tam giác QMP
\(\Rightarrow HG//MP\left(1\right)\)
Xét tam giác MNP có: \(\left \{ {{\text{E là trung điểm MN (gt)}} \atop {\text{F là trung điểm NP (gt)}}} \right.\)
Do đó EF là đường trung bình của tam giác MNP
\(\Rightarrow EF//MP\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow HG//EF\left(3\right)\)
Xét tam giác MNQ có: \(\left \{ {{\text{H là trung điểm QM (gt)}} \atop {\text{E là trung điểm MN (gt)}}} \right.\)
Do đó HE là đường trung bình của tam giác MNQ
\(\Rightarrow HE//NQ\left(4\right)\)
Xét tam giác NQP có: \(\left \{ {{\text{G là trung điểm QP (gt)}} \atop {\text{F là trung điểm NP (gt)}}} \right.\)
Do đó GF là đường trung bình của tam giác NQP
\(\Rightarrow GF//QN\left(5\right)\)
Từ \(\left(4\right);\left(5\right)\Rightarrow HE//GF\left(6\right)\)
Từ \(\left(3\right);\left(6\right)\Rightarrow\)Tứ giác EFGH là hình bình hành
Vậy tứ giác EFGH là hình bình hành
Xét ΔMQN có
E là trung điểm của MN
H là trung điểm của MQ
Do đó: EH là đường trung bình của ΔMQN
Suy ra: EH//NQ và \(EH=\dfrac{NQ}{2}\left(1\right)\)
Xét ΔQPN có
F là trung điểm của NP
G là trung điểm của GP
Do đó: FG là đường trung bình của ΔQPN
Suy ra: FG//NQ và \(FG=\dfrac{NQ}{2}\left(2\right)\)
Từ (1)và (2) suy ra EH//GF và EH=GF
hay EHGF là hình bình hành
Sửa đề: A,B,C,D lần lượt là trung điểm của MN,NP,PQ,MQ
Xét ΔNMP có NA/NM=NB/NP
nên AB//MP và BA/MP=NA/NM=1/2
Xét ΔQMP có QC/QP=QD/QM=1/2
nên DC//MP và DC=1/2MP
=>AB//CD và AB=CD
=>ABCD là hình bình hành
a: Xét ΔMNP có
E là trung điểm của MN
F là trung điểm của NP
Do đó: EF là đường trung bình của ΔMNP
Suy ra: EF//MP và EF=MP/2(1)
Xét ΔMQP có
K là trung điểm của MQ
H là trung điểm của QP
Do đó: KH là đường trung bình của ΔMQP
Suy ra: KH//MP và KH=MP/2(2)
Xét ΔMNQ có
E là trung điểm của MN
K là trung điểm của MQ
Do đó: EK là đường trung bình của ΔMNQ
Suy ra: EK=NQ/2=MP/2(3)
Từ (2) và (3) suy ra KH=EK(4)
Từ (1) và (2) suy ra EF//KH và EF=KH(5)
Từ (4) và (5) suy ra EFHK là hình thoi