Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNP có
E là trung điểm của MN
F là trung điểm của NP
Do đó: EF là đường trung bình của ΔMNP
Suy ra: EF//MP và EF=MP/2(1)
Xét ΔMQP có
K là trung điểm của MQ
H là trung điểm của QP
Do đó: KH là đường trung bình của ΔMQP
Suy ra: KH//MP và KH=MP/2(2)
Xét ΔMNQ có
E là trung điểm của MN
K là trung điểm của MQ
Do đó: EK là đường trung bình của ΔMNQ
Suy ra: EK=NQ/2=MP/2(3)
Từ (2) và (3) suy ra KH=EK(4)
Từ (1) và (2) suy ra EF//KH và EF=KH(5)
Từ (4) và (5) suy ra EFHK là hình thoi
Tứ giác EFGH là hình chữ nhật.
Giải thích: Theo giả thiết ta có EF, GH lần lượt là đường trung bình của tam giác Δ ABC,Δ ADC
Áp dụng định lí đường trung bình vào hai tam giác ta được
Chứng minh tương tự: EH//FG//BD ( 2 )
Từ ( 1 ) và ( 2 ), tứ giác EFGH có hai cặp cạnh đối song song nên tứ giác EFGH là hình bình hành.
Gọi O là giao điểm của AC và BD, I là giao điểm của EF với BD.
Áp dụng tính chất của các góc đồng vị vào các đường thẳng song song ở trên và giả thiết nên ta có:
Hình bình hành EFGH có một góc vuông nên EFGH là hình chữ nhật.
Chọn A
chọn B