K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2016

a, vì tứ giác ABCD là hình vuông => AB = BC = CD = DA .

góc A = góc B = góc C = góc D

mà AM = BN = CH = DK ( gt )

=> AM = BM =BN = CN = CH = DH = DK = AK

Xét tam giác AMK , tam giác BNM , tam giác CHN , tam giác DKH có :

AK = AM = BM = BN = CN = CH = DH = DK

góc A = góc B = góc C = góc D

=> tam giác AMK = tam giác BNM = tam giác CHN = tam giác DKH ( c.g.c )

( mình gộp luôn ý b nha ! )

b,

Do đó KM = NM = NH = KH (1)

và góc MKA = góc NMB

Ta có góc KMN = 1800 - ( góc KMA + góc NMB ) = 1800 - (góc KMA + góc MKA )

= 1800 - 900 = 900 (2)

Từ (1) và (2) => MN vuông góc với MK

chứng minh tự 3 góc còn lại kết hợp với (1)

ta được tứ giác MNHK là hình vuông .

 

 

 

 

 

 

8 tháng 11 2016

Hỏi đáp Toán

8 tháng 11 2016

kéo sang tab mới mà xem cho rõ nha !

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc...
Đọc tiếp

Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.

Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.

Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc với đường thẳng BC.Gọi I là giao điểm của MN và BC.

a)Chứng minh : IE=IF

b)Trên cạnh AC lấy điểm D sao cho CD=CN.Chứng minh rằng BMDC là hình thang cân.

Bài 4:Cho tam giác ABC cân ở A ;M là trung điểm của BC.Trên tia AM lấy điểm N;BN cắt AC ở D,CN cắt AB ở E.Chứng minh BEDC là hình thang cân

Bài 5:Cho hình thang cân ABCD (AB song song với CD) ; góc D=60 độ,AD=AB

a)Chứng minh :DB là phân giác góc ADC

b)Chứng minh : DB vuông góc với BC

0
30 tháng 10 2017

Hình đa giác TenDaGiac1: DaGiac(A, B, 4) Hình đa giác TenDaGiac1: DaGiac(A, B, 4) Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng h: Đoạn thẳng [C, D] Đoạn thẳng i: Đoạn thẳng [D, A] Đoạn thẳng j: Đoạn thẳng [D, B] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [A, N] Đoạn thẳng p: Đoạn thẳng [C, N] Đoạn thẳng r: Đoạn thẳng [O, M] Đoạn thẳng q: Đoạn thẳng [O, E] Đoạn thẳng s: Đoạn thẳng [E, M] Đoạn thẳng t: Đoạn thẳng [B, N] Đoạn thẳng b: Đoạn thẳng [C, H] Đoạn thẳng f_1: Đoạn thẳng [H, M] A = (-2.56, 2.02) A = (-2.56, 2.02) A = (-2.56, 2.02) B = (1.54, 1.98) B = (1.54, 1.98) B = (1.54, 1.98) Điểm C: DaGiac(A, B, 4) Điểm C: DaGiac(A, B, 4) Điểm C: DaGiac(A, B, 4) Điểm D: DaGiac(A, B, 4) Điểm D: DaGiac(A, B, 4) Điểm D: DaGiac(A, B, 4) Điểm O: Giao điểm đường của j, k Điểm O: Giao điểm đường của j, k Điểm O: Giao điểm đường của j, k Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm N: Giao điểm đường của l, m Điểm N: Giao điểm đường của l, m Điểm N: Giao điểm đường của l, m Điểm E: Giao điểm đường của d', f Điểm E: Giao điểm đường của d', f Điểm E: Giao điểm đường của d', f Điểm H: Giao điểm đường của a, t Điểm H: Giao điểm đường của a, t Điểm H: Giao điểm đường của a, t

a) Xét tam giác OEB và tam giác OMC có:

OB = OC (Vì ABCD là hình vuông)

EB = MC (gt)

\(\widehat{OCM}=\widehat{OBE}\left(=45^o\right)\)

\(\Rightarrow\Delta OEB=\Delta OMC\left(c-g-c\right)\Rightarrow OE=OM;\widehat{EOB}=\widehat{MOC}\)

Ta có \(\widehat{MOC}+\widehat{MOB}=\widehat{BOC}=90^o\Rightarrow\widehat{EOM}=\widehat{EOB}+\widehat{MOB}=90^o\)

Vậy tam giác OEM vuông cân.

b)  Ta luôn có \(\Delta CMN\sim\Delta BMA\left(g-g\right)\Rightarrow\frac{CM}{BM}=\frac{MN}{MA}\) 

Lại có \(CM=BE\), mà AB = BC nên AE = MB

Vậy thì \(\frac{CM}{MC}=\frac{EB}{AE}\)

Xét tam giác ABN có \(\frac{AE}{EB}=\frac{AM}{MN}\) , áp dụng định lý Ta-let đảo, ta có EM // BN.

c) Giả sử OM cắt BN tại H'. Khi đó ta có \(\widehat{OME}=\widehat{MH'B}=45^o\)

Suy ra \(\Delta OMC\sim\Delta H'MB\left(g-g\right)\Rightarrow\frac{MC}{BM}=\frac{OC}{H'B}\)

Xét tam giác OMB và tam giác CMH' có :

\(\frac{MC}{BM}=\frac{OC}{H'B}\left(cmt\right)\)

Góc \(\widehat{OMB}=\widehat{CMH'}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta OMB\sim\Delta CMH'\left(c-g-c\right)\Rightarrow\widehat{CH'M}=\widehat{OBM}=45^o\)

Vậy thì \(\widehat{BH'C}=\widehat{BH'M}+\widehat{MH'C}=45^o+45^o=90^o\)

Hay \(CH'\perp BN\)

Vậy H trùng H' hay O, M , H thẳng hàng.

10 tháng 2 2017
Câu cuối hơi khó
19 tháng 3 2017

cuoi cau nay hoi kho mot chut nhung van de dang