Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2
tam giác ABM bằng tam giác DBN (c.g.c) nên BM=BN và ABM=DBN ta có ABM+MBD=60 nên DBN+MBD=60 hay MBN =60 tam giác MBN đều
Gọi K là giao điểm của MP và NQ
Kẽ MH, QE lần lược vuông góc với DC, BC tại H,E. I, F là giao điểm của QE với MP và MH
Ta có QE //DC
=> MIQ = MPH (góc đồng vị)
MIQ = QNE ( + NQE = 90)
=> MPH = QNE (1)
Xét tam giác QNE và tam giác MPH có
Góc MPH = góc QNE
Góc MHP = góc QEN = 90
MH = QE (cùng bằng cạnh hình vuông)
=> Tam giác QNE = tam giác MPH
=> NQ = PM
a: Xét ΔABM vuông tại B và ΔADN vuông tại D có
AB=AD
BM=DN
Do đó: ΔABM=ΔADN
b: ΔABM=ΔADN
=>AM=AN và \(\widehat{MAB}=\widehat{NAD}\)
\(\widehat{MAB}+\widehat{DAM}=\widehat{BAD}=90^0\)
mà \(\widehat{MAB}=\widehat{NAD}\)
nên \(\widehat{DAM}+\widehat{DAN}=90^0\)
=>\(\widehat{MAN}=90^0\)
Xét ΔAMN có AM=AN và \(\widehat{MAN}=90^0\)
nênΔAMN vuông cân tại A
d: ΔAMN cân tại A
mà AI là đường phân giác
nên I là trung điểm của MN và AI\(\perp\)MN tại I
=>AP\(\perp\)MN tại I
Xét ΔPNM có
PI là đường cao
PI là đường trung tuyến
Do đó: ΔPNM cân tại P
=>PN=PM
=>PM=PD+DN=PD+BM
a) △APQ và △BMQ có: \(\widehat{PAQ}=\widehat{MBQ}=45^0\); \(\widehat{AQP}=\widehat{BQM}\).
\(\Rightarrow\)△APQ∼△BMQ (g-g).
\(\Rightarrow\dfrac{QP}{QA}=\dfrac{QM}{QB}\Rightarrow\dfrac{QP}{QM}=\dfrac{QA}{QB}\).
△ABQ và △MPQ có: \(\dfrac{QP}{QM}=\dfrac{QA}{QB};\widehat{AQB}=\widehat{MQP}\)
\(\Rightarrow\)△ABQ∼△MPQ (c-g-c).
b) △ABQ∼△MPQ \(\Rightarrow\widehat{BAQ}=\widehat{MPQ}\).
△APQ và △BPA có: \(\widehat{PAQ}=\widehat{PBA}=45^0;\widehat{APB}\) là góc chung.
\(\Rightarrow\)△APQ∼△BPA (g-g)\(\Rightarrow\widehat{BAP}=\widehat{AQP}\).
Mà \(\widehat{AQP}+\widehat{APQ}=180^0-\widehat{PAQ}=180^0-45^0=135^0\)
\(\Rightarrow\widehat{BAP}+\widehat{APQ}=135^0\)
\(\Rightarrow45^0+\widehat{BAQ}+\widehat{APQ}=135^0\)
\(\Rightarrow\widehat{MPQ}+\widehat{APQ}=\widehat{APM}=90^0\)
Hay MP⊥AN tại P.