Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ANDM có
\(\widehat{AND}=\widehat{AMD}=\widehat{MAN}=90^0\)
Do đó: ANDM là hình chữ nhật
Bài 1
a/Xét tứ giác BHCD có M đồng thời là trung điểm của cả HD và BC
Do đó BHCD là hình bình hành \(\Rightarrow BH//CD,CH//BD\)
Mặt khác vì ta có H là trực tâm của tam giác ABC nên \(BH\perp AC,CH\perp AB\)
Suy ra \(BD\perp AB,CD\perp AC\Rightarrow\Delta ABD,\Delta ACD\)là tam giác vuông
b/Xét \(\Delta ABD,\Delta ACD:\widehat{ABD}=\widehat{ACD}=90^0\);I là trung điểm của cạnh huyền chung AD
Suy ra \(IA=IB=IC=ID\)
Bài 2a/Vì AD=CD(gt) nên D nằm trên trung trực của đoạn AC suy ra \(\widehat{DAC}=\widehat{ECA}=90^0-60^0=30^0\)
Suy ra \(\widehat{BAD}=90^0+\widehat{DAC}=120^0\)
b/Trước hết ta thấy ABCD đã là hình thang,nên ta đi chứng minh \(\widehat{BCD}=\widehat{ABC}=60^0\)
Ta có \(\widehat{BCD}=\widehat{DCA}+\widehat{ACB}=\widehat{DAC}+30^0=30^0+30^0=60^0\)
Vậy ABCD là hình thang cân
c/Ta có \(\Delta BCE:AE=BE,\widehat{ABE}=60^0\Rightarrow AE=BE=AB\)
\(\widehat{ADE}=\frac{1}{2}.\widehat{ADC}=60^0;\widehat{BAD}=120^0=\widehat{BED}\)
Suy ra ABED là hình bình hành
Mà ta còn có AB=EB
Vậy ABED là hình thoi
A) Tứ giác AMIN là hình chữ nhật. Vì i là trung điểm của BC, nên AM = AN (do đường cao cắt đường trung bình tại trung điểm). Vì iM vuông góc với AB và iN vuông góc với AC, nên AMIN là hình chữ nhật.
B) Lấy D sao cho N là trung điểm của Di. Ta cần chứng minh ADCi là hình thoi.
Vì N là trung điểm của Di, nên DN = Ni. Vì i là trung điểm của BC, nên BN = NC.
Ta có AN = AM (vì AMIN là hình chữ nhật).
Vì AB < AC, nên AM < AN. Khi đó, DN < Ni.
Vì DN = Ni và DN < Ni, nên DNi là đường cao của tam giác ADCi.
Vì DNi là đường cao và AN = AM, nên ADCi là hình thoi.
C) Đường thẳng BN cắt DC tại K. Ta cần chứng minh DK/DC = 1/3.
Vì BN là đường cao của tam giác ADC, nên DK/DC = BK/BC.
Vì BN cắt DC tại K, nên DK + KC = DC.
Vì N là trung điểm của BC, nên BK = KC.
Khi đó, DK/DC = BK/BC = BK/(BK + KC) = BK/(BK + DK) = 1/3 (vì BK = DK).
Vậy, DK/DC = 1/3.
a: Sửa đề: Cho tam giác ABC vuông tại A
Xét tứ giác AMIN có
\(\widehat{AMI}=\widehat{ANI}=\widehat{MAN}=90^0\)
=>AMIN là hình chữ nhật
b: Xét ΔABC có
I là trung điểm của bC
IN//AB
Do đó: N là trung điểm của AC
Xét tứ giác AICD có
N là trung điểm chung của AC và ID
=>AICD là hình bình hành
Hình bình hành AICD có AC\(\perp\)ID
nên AICD là hình thoi
cho hình tam giác ABCD ư viết lại đề bài đi bạn
câu 2
tam giác ABM bằng tam giác DBN (c.g.c) nên BM=BN và ABM=DBN ta có ABM+MBD=60 nên DBN+MBD=60 hay MBN =60 tam giác MBN đều