Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đoán đề là M thuộc BD hoặc M thuộc CD, nhưng M thuộc cái nào thì giải vẫn vậy thôi, do câu e) có liên quan nên đến đấy mới xét M, nhưng vẽ hình là M thuộc CD cho dễ nhìn nhé
a) Có: \(\widehat{NAD}=90^0-\widehat{MAD}=90^0-\widehat{AEB}=90^0-\left(90^0-\widehat{EAB}\right)=\widehat{EAB}\)
Xét 2 tam giác vuông ADN và ABE có: AD=AB và ^NAD=^EAB => \(\Delta ADN=\Delta ABE\) (g-c-g) => \(AN=AE\)
Tam giác vuông AEN có AE=AN => AEN vuông cân tại A
b) Hình chữ nhật ABCD có BD là đường chéo => \(\widehat{ADB}=\widehat{CDB}=45^0\)
Mà \(\widehat{CDB}=\widehat{ODN}\) ( đối đỉnh ) => \(\widehat{ADB}+\widehat{ODN}=90^0\)\(\Leftrightarrow\)\(\widehat{ADB}+\widehat{ODN}+\widehat{ADN}=180^0\)
=> B, D, O thẳng hàng
c) Có: \(\Delta MDA~\Delta ADN\) ( do \(\widehat{NAD}=90^0-\widehat{MAD}=\widehat{AMD}\) và \(\widehat{ADN}=\widehat{MDA}=90^0\) )
=> \(\frac{AD}{AM}=\frac{DN}{AN}\)\(\Leftrightarrow\)\(\frac{AB}{AM}=\frac{DN}{AE}\)\(\Leftrightarrow\)\(\frac{AB^2}{AM^2}=\frac{DN^2}{AE^2}\)
=> \(\frac{AB^2}{AM^2}+\frac{AB^2}{AE^2}=\frac{DN^2}{AE^2}+\frac{AB^2}{AE^2}=\frac{DN^2+AD^2}{AE^2}=\frac{AN^2}{AE^2}=1\)
\(\Leftrightarrow\)\(\frac{1}{AM^2}+\frac{1}{AE^2}=\frac{1}{AB^2}\) ( đpcm )
d) Tam giác AEN vuông cân tại A nên có OA là đường trung tuyến nên OA cũng là đường cao => \(OA\perp NE\)
e) từ câu c) ta có: \(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\)\(\Leftrightarrow\)\(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\ge2\sqrt{\frac{1}{AM^2.AE^2}}=\frac{2}{AM.AE}\)
Dấu "=" xảy ra khi M trùng với C(M thuộc CD) hoặc M là trung điểm của BD(M thuộc BD) (đã nói ở đầu bài)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
CHO MÌNH SỬA LẠI CÂU 2: Biết chu vi \(\Delta ABH=30cm\)và chu vi \(\Delta ACH=10cm\).Tính chu vi \(\Delta ABC\)
Hình bạn tự vẽ nha.
a, ABCD là hình vuông \(\Rightarrow AB=BC=CD=AD\)
Ta có: \(\hat{IAD}+\hat{DAE}=90^o\)
\(\hat{BAE}+\hat{DAE}=90^o\)
\(\Rightarrow \hat{IAD} =\hat{BAE}\)
Xét \(\Delta ADI\) và \(\Delta ABE\) có:
\(\hat{ADI}=\hat{ABE}=90^o\)
\(AD=AB\left(cmt\right)\)
\(\hat{IAD}=\hat{BAE}(cmt)\)
\(\Rightarrow\Delta ADI=\Delta ABE\left(g-c-g\right)\Rightarrow AI=AE\)
b, \(\Delta AIK\) có: \(\hat{IAK}=90^o\), \(AD\perp IK\)
\(\Rightarrow AD.IK=AI.AK\) (hệ thức lượng trong tam giác vuông) mà \(AI=AE\left(cmt\right)\Rightarrow AD.IK=AE.AK\)
c, \(\Delta AIK\) có: \(\hat{IAK}=90^o\), \(AD\perp IK\)
\(\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AI^2}+\dfrac{1}{AK^2}\)(hệ thức lượng trong tam giác vuông) mà \(AI=AE\left(cmt\right)\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AE^2}+\dfrac{1}{AK^2}\) mà hình vuông ABCD không đổi \(\Rightarrow\) AD không đổi\(\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AE^2}+\dfrac{1}{AK^2}\) không đổi
Vậy \(\dfrac{1}{AE^2}+\dfrac{1}{AK^2}\) không đổi khi E thay đổi trên cạnh BC
Hai câu cuối í ẹ chưa nghĩ ra, để sau.