Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thể tích hình nón : V = (1/3) π . r 2 h ( c m 3 )
Vậy chọn đáp án B
a: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
Tâm O là trung điểm của AH
bán kính là AH/2=R
b:
ΔABC vuông tại A có AH là đường cao
nên HA^2=HB*HC
=>HA/HC=HB/HA
HO/HN=HA/HC=HB/HA
Xét ΔBHO vuông tại H và ΔAHN vuông tại H có
HB/HA=HO/HN
=>ΔBHO đồng dạng với ΔAHN
a, Tính được HA=4cm; HB=9cm
b, Tính được HA=4cm; HB=9cm
c, Tính được HM = 12 13 13 cm, HN = 18 13 13 cm
Từ đó tính được S C M H N = 216 13 c m 2
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
Ta có: ΔBAO vuông tại A
=>ΔBAO nội tiếp đường tròn đường kính BO
=>A nằm trên đường tròn đường kính BO(1)
Ta có: ΔBMO vuông tại M
=>ΔBMO nội tiếp đường tròn đường kính BO
=>M nằm trên đường tròn đường kính BO(2)
Từ (1),(2) suy ra A,B,M,O cùng thuộc đường tròn đường kính BO
a)Ta có:
AO=OB=OD = 13:2=7,5 cm
Theo Py-ta-go suy ra:\(OH=\sqrt{7,5^2-6^2}=4,5cm\)
Do đó:
AH = AO-OH = 7,5-4,5 = 3 cm
HB = OH + OB = 4,5+7,5 = 12 cm
b)Dễ thấy tứ giác CMHN là hcn (do có 3 góc vuông)
Ta có:
+Theo Py-ta-go: \(AC=\sqrt{AH^2+HC^2}=3\sqrt{5}cm\)
+Hệ thức lượng trong tam giác:\(CH^2=CM.AC\)suy ra \(CM=\frac{12\sqrt{5}}{5}cm\)
+Hệ thức lượng trong tam giác:\(\frac{1}{MH^2}=\frac{1}{AH^2}+\frac{1}{CH^2}\)
Suy ra \(MH=\frac{6\sqrt{5}}{5}cm\)
Vậy S(CMHN) = CM.MH = 14,4 CM^2
Chọn đáp án C
Do O là tâm đường tròn nội tiếp hình vuông ABCD nên bán kính đường tròn nội tiếp hình vuông là: