Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|\overrightarrow{AB}+\overrightarrow{BD}\right|=\left|\overrightarrow{AD}\right|\)
\(=AD=10\left(cm\right)\)
AD=2AB=10cm
=>\(AB=\dfrac{10}{2}=5\left(cm\right)\)
ABCD là hình chữ nhật
=>\(DB^2=DA^2+AB^2\)
=>\(DB^2=10^2+5^2=125\)
=>\(DB=\sqrt{125}=5\sqrt{5}\left(cm\right)\)
Gọi K là trung điểm của AB
Xét ΔDAB có DK là đường trung tuyến
nên \(\overrightarrow{DA}+\overrightarrow{DB}=2\cdot\overrightarrow{DK}\)
K là trung điểm của AB
=>\(KA=\dfrac{5}{2}=2,5\left(cm\right)\)
ΔKAD vuông tại A
=>\(DK^2=DA^2+AK^2\)
=>\(DK^2=10^2+2,5^2=106,25\)
=>\(DK=\dfrac{5\sqrt{17}}{2}\left(cm\right)\)
\(\left|\overrightarrow{AD}+\overrightarrow{BD}\right|=\left|-\overrightarrow{DA}-\overrightarrow{DB}\right|\)
\(=\left|\overrightarrow{DA}+\overrightarrow{DB}\right|=\left|2\cdot\overrightarrow{DK}\right|\)
\(=2\cdot DK\)
\(=2\cdot\dfrac{5\sqrt{17}}{2}=5\sqrt{17}\)
a: Kẻ OH\(\perp\)AB
OH\(\perp\)AB
AD\(\perp\)AB
Do đó OH//AD
Xét ΔBAD có
O là trung điểm của BD
OH//AD
Do đó: H là trung điểm của AB
=>\(OH=\dfrac{AD}{2}=\dfrac{8}{2}=4\)
XétΔOAB có OH là trung tuyến
nên \(\overrightarrow{OA}+\overrightarrow{OB}=2\cdot\overrightarrow{OH}\)
=>\(\left|\overrightarrow{OA}+\overrightarrow{OB}\right|=2\cdot OH=2\cdot4=8\)
b: \(\left|\overrightarrow{OA}-\overrightarrow{OB}\right|=\left|\overrightarrow{BO}+\overrightarrow{OA}\right|=\left|\overrightarrow{BA}\right|\)
\(=BA=8\left(cm\right)\)
a) Do ABCD cũng là một hình bình hành nên \(\overrightarrow {DA} + \overrightarrow {DC} = \overrightarrow {DB} \)
\( \Rightarrow \;|\overrightarrow {DA} + \overrightarrow {DC} |\; = \;|\overrightarrow {DB} |\; = DB = a\sqrt 2 \)
b) Ta có: \(\overrightarrow {AD} + \overrightarrow {DB} = \overrightarrow {AB} \) \( \Rightarrow \overrightarrow {AB} - \overrightarrow {AD} = \overrightarrow {DB} \)
\( \Rightarrow \left| {\overrightarrow {AB} - \overrightarrow {AD} } \right| = \left| {\overrightarrow {DB} } \right| = DB = a\sqrt 2 \)
c) Ta có: \(\overrightarrow {DO} = \overrightarrow {OB} \)
\( \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OA} + \overrightarrow {DO} = \overrightarrow {DO} + \overrightarrow {OA} = \overrightarrow {DA} \)
\( \Rightarrow \left| {\overrightarrow {OA} + \overrightarrow {OB} } \right| = \left| {\overrightarrow {DA} } \right| = DA = a.\)
vecto ba+vecto bd
=3a/4
chúc bạn học tốt