Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bẹn tự vẽ hình nhé
Vì A' đối xứng với B qua A => AA' =AB
=. \(\overrightarrow{A'A}=\overrightarrow{AB}\)
Vì B' đối xứng với C qua B => \(\overrightarrow{B'B}=\overrightarrow{BC}\)
Vì C' đối xứng với A qua C => \(\overrightarrow{C'C}=\overrightarrow{CA}\)
Ta có: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\left(\overrightarrow{OA'}+\overrightarrow{A'A}\right)+\left(\overrightarrow{OB'}+\overrightarrow{B'B}\right)+\left(\overrightarrow{OC'}+\overrightarrow{C'C}\right)\)
\(=\left(\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\right)+\left(\overrightarrow{A'A}+\overrightarrow{B'B}+\overrightarrow{C'C}\right)\)
Lại có: \(\overrightarrow{A'A}+\overrightarrow{B'B}+\overrightarrow{C'C}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\)\(=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{CA}=\overrightarrow{AC}+\overrightarrow{CA}=\overrightarrow{AC}-\overrightarrow{AC}=0\)
\(\Rightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}+0=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\)
\(\left|\overrightarrow{OA}\right|=\left|\overrightarrow{OB}\right|=\left|\overrightarrow{OC}\right|\Leftrightarrow OA=OB=OC\Leftrightarrow O\) là tâm đường tròn ngoại tiếp tam giác ABC (1)
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\Leftrightarrow O\) là trọng tâm tam giác ABC (2)
(1); (2) \(\Rightarrow\) ABC là tam giác đều
\(\Rightarrow\widehat{AOB}=\widehat{BOC}=\widehat{COA}=120^0\)
Hình bình hành ABCD có: OB=OD
\(\Rightarrow\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}\)(1)
OA=OC
\(\Rightarrow\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{0}\)(2)
Từ (1), (2), ta suy ra: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)
a: Kẻ OH\(\perp\)AB
OH\(\perp\)AB
AD\(\perp\)AB
Do đó OH//AD
Xét ΔBAD có
O là trung điểm của BD
OH//AD
Do đó: H là trung điểm của AB
=>\(OH=\dfrac{AD}{2}=\dfrac{8}{2}=4\)
XétΔOAB có OH là trung tuyến
nên \(\overrightarrow{OA}+\overrightarrow{OB}=2\cdot\overrightarrow{OH}\)
=>\(\left|\overrightarrow{OA}+\overrightarrow{OB}\right|=2\cdot OH=2\cdot4=8\)
b: \(\left|\overrightarrow{OA}-\overrightarrow{OB}\right|=\left|\overrightarrow{BO}+\overrightarrow{OA}\right|=\left|\overrightarrow{BA}\right|\)
\(=BA=8\left(cm\right)\)