C A O B D y x I M K N
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2020

chỉ cần câu c) thôi nhé

27 tháng 6 2020

help :(

22 tháng 5 2017

TenAnh1 B = (10.82, -5.9) B = (10.82, -5.9) B = (10.82, -5.9) '
a) Xét tứ giác PKHE có: \(\widehat{HPK}+\widehat{PEH}=90^o+90^o=180^o\).
Nên tứ giác PKHE là tứ giác nội tiếp.
b) Vì \(\widehat{PMQ}=90^o\) (góc nội tiếp chắn nửa đường tròn) nên \(PM\perp MQ\). (1)
Theo giả thiết: \(NK\perp PM\) (2)
Từ (1) và (2) suy ra: MQ//NK (theo tính chất từ vuông góc tới song song).
Do MQ//NK nên \(\widehat{QMN}=\widehat{MNK}\) (hai góc so le trong). (3)
Mặt khác \(\widehat{QMN}=\widehat{NPQ}\) (cùng chắn cung MN). (4)
Từ (3) và (4) suy ra \(\widehat{KNM}=\widehat{NPQ}\).
c) Kéo dài MO cắt đường tròn tại K'.
Ta sẽ chứng minh tứ giác NHPK' là hình bình hành.
Do các đường cao ME, NK cắt nhau tại H nên H là trực tâm tam giác MNP vì vậy \(HP\perp MN\). (5)
Mặt khác do MK' là đường kính nên \(\widehat{MNK'}=90^o\) (góc nội tiếp chắn nửa đường tròn) suy ra \(NK'\perp MN\) . (6)
Từ (5) và (6) suy ra: HP//NK'.
Tương tự ta chứng minh được: HN//PK'.
Xét tứ giác NHPK có HP//NK' và HN//PK' nên tứ giác NHPK' là hình bình hành.
Suy ra: \(HP=NK'\).
Do K' là điểm cố định (Vì M và đường tròn O cố định) nên NK' không đổi hay HP không đổi. (Có thể đề sai).
 

22 tháng 5 2017

camon rất nhìu

bài 1: rút gọn các biểu thức sau: a) \(3\sqrt{\frac{1}{3}}+\frac{1}{2}\sqrt{12}+\sqrt{3}\) b) \(\sqrt{12}-\sqrt{27}+3\sqrt{8}-\sqrt{32}\) bài 2: cho hàm số bậc nhất y= \(\left(1-\sqrt{5}\right)x-1\) a) hàm số trên là đồng biến hay nghịch biến trên R? vì sao? b) tính giá trị của y khi \(x=1+\sqrt{5}\) c) tính giá trị của x khi \(y=-\sqrt{5}\) bài 3: cho hai hàm số bậc nhất y= (k+3) x+2 và y= (5-k)x+3 a) với gt nào của k thì...
Đọc tiếp

bài 1: rút gọn các biểu thức sau:

a) \(3\sqrt{\frac{1}{3}}+\frac{1}{2}\sqrt{12}+\sqrt{3}\)

b) \(\sqrt{12}-\sqrt{27}+3\sqrt{8}-\sqrt{32}\)

bài 2: cho hàm số bậc nhất y= \(\left(1-\sqrt{5}\right)x-1\)

a) hàm số trên là đồng biến hay nghịch biến trên R? vì sao?

b) tính giá trị của y khi \(x=1+\sqrt{5}\)

c) tính giá trị của x khi \(y=-\sqrt{5}\)

bài 3: cho hai hàm số bậc nhất y= (k+3) x+2 và y= (5-k)x+3

a) với gt nào của k thì đồ thị của hai hàm số là hai đường thẳng song song với nhau?

b) với gt nào của k thì đồ thị của hai hàm số là hai đường thẳng cắt nhau?

c) hai đường thẳng nói trên có thể trùng nhau được không? vì sao?

bài 4: cho biểu thức:\(p=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{3x+3}{9-x}+\frac{\sqrt{x}}{\sqrt{x}-3}\right):\frac{\sqrt{x}+1}{\sqrt{x-3}}\)

a) rút gọn p

b) tìm x để \(p=-\frac{1}{3}\)

c) tìm GTNN của P

bài 5: cho biểu thức: \(A=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\)

a) rút gọn A

b) tính giá trị của A khi x = 9

c) tìm x để \(A< \frac{1}{3}\)

bài 6: cho hàm số y= (m-2) x+3

a) tìm m để hàm số đồng biến, nghịch biến

b) tìm m để đồ thị hàm số đi qua điểm A(1;-2)

vẽ đồ thị hàm số với giá trị của m vừa tìm được ở câu a

bài 7: dựng góc nhọn a, biết \(\cos a=\frac{3}{5}\)

bài 8: cho nửa đường tròn (O), đường kính AB. kẻ các tiếp tuyến Ax, By cùng phía đối với nửa đường tròn đối với AB. lấy điểm C bất kì trên nửa đường tròn đó. tiếp tuyến của nửa đường tròn tại C cát Ax, By lần lượt ở M và N.

a) tính MÔN

b) chứng minh bốn điểm: O, A, M, C cuàng thược một đường tròn

c) gọi E là giao điểm của OM và AC, F là giao điểm của ON và BC

chứng minh: OE.OM= OF.ON

bài 9: từ một điểm nằm ngoài (O;R), kẻ các tiếp tuyến MB, MC với đường tròn( B,C là các tiếp tuyến)

a) chứng minh OM\(\perp\)OB

b) vẽ đường kính BI. chứng minh rằng: CI\(//\)MO

c) gọi K là giao điểm của MO và BC. chứng minh: MB . MC = MK . MO

bài 10: cho nửa đường tròn tâm O, đường kính MN=2R, A là một điểm tùy ý trên nửa đường tròn (A\(\ne\)M; N). kẻ hai tiếp tuyến Mx, Ny với nửa đường tròn. qua A kẻ tiếp tuyến thứ ba lần lượt cắt Mx, Ny tại I và K.

a) chứng minh IK = MI + NK và IÔK = \(^{90^0}\)

b) chứng minh MI . NK = \(^{R^2}\)

c) OI cắt MA tại E, OK cắt AN tại F. chứng minh EF = R

d) tìm vị trí của A để IK có độ dài nhỏ nhất.

mọi người ai biết thì giúp em với ạ em đang cẩn gấp ạ.

1
22 tháng 11 2022

Bài 2:

a: \(1-\sqrt{5}< 0\)

nên hàm số nghịch biến

b: \(y=\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)-1=1-5-1=-5\)

c: \(\Leftrightarrow\left(1-\sqrt{5}\right)x-1=-\sqrt{5}\)

\(\Leftrightarrow x\left(1-\sqrt{5}\right)=-\sqrt{5}+1\)

=>x=1

19 tháng 12 2019

(tự vẽ hình)

a) Đường tròn tâm I đường kính OA có bán kính r=IA

Ta có khoảng cách tâm của hai đường tròn: OI=OA-IA=R-r

=> Hai đường tròn (O,R) và (I,r) tiếp xúc trong tại A.

b) Tam giác ACB nội tiếp trong nửa đường tròn đường kính AB nên vuông tại C.

Tam giác ADO nội tiếp trong nửa đường tròn đường kính AO nên vuông tại D.

=> BC//OD (cùng ⊥ AC)

=> \(\frac{AD}{AO}=\frac{DC}{OB}\)

mà AO=OB (bán kính) => AD=DC (1)

Ta lại có AI=IO (bán kính) (2)

Từ (1) và (2) => \(\frac{AD}{AI}=\frac{DC}{IO}\)

=> ID//OD (t/c các đoạn thẳng tỉ lệ)

c) Tam giác ABC vuông tại C, ta có:

BC2=AB2-AC2=(2R)2-(R\(\sqrt{3}\))2=R2

=> BC=R

SΔABC=\(\frac{AC.BC}{2}=\frac{R\sqrt{3}.R}{2}=\frac{R^2\sqrt{3}}{2}\)

ΔAOD∼ΔABC (do OD//BC) theo tỉ lệ k=\(\frac{AO}{AB}=\frac{1}{2}\)

=> SΔAOD=k2.SΔABC=\(\left(\frac{1}{2}\right)^2.\frac{R^2\sqrt{3}}{2}=\frac{R^2\sqrt{3}}{8}\)

SODCB=SΔABC-SΔAOD=\(\frac{R^2\sqrt{3}}{2}-\frac{R^2\sqrt{3}}{8}=\frac{3R^2\sqrt{3}}{8}\)

Bài 1: Cho biểu thức A =\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\) với \(x\)>0 a) Tính giá trị của biểu thức A khi \(x=16\) b) Rút gọn biểu thức P=A\(\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\) với \(x\)>0 \(x\ne4\) c) Tìm các giá trị của \(x\) để P>\(\dfrac{1}{3}\) Bài 2: 1) Thực hiện phép tính \(\sqrt{50}-3\sqrt{8}+\sqrt{32}\) 2) giải phương trình sau: a) \(\sqrt{x^2-4x+4}=1\) b) \(\sqrt{x^2-3x}-\sqrt{x-3}=0\) Bài 3:Cho...
Đọc tiếp

Bài 1: Cho biểu thức A =\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\) với \(x\)>0

a) Tính giá trị của biểu thức A khi \(x=16\)

b) Rút gọn biểu thức P=A\(\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\) với \(x\)>0 \(x\ne4\)

c) Tìm các giá trị của \(x\) để P>\(\dfrac{1}{3}\)

Bài 2: 1) Thực hiện phép tính \(\sqrt{50}-3\sqrt{8}+\sqrt{32}\)

2) giải phương trình sau:

a) \(\sqrt{x^2-4x+4}=1\)

b) \(\sqrt{x^2-3x}-\sqrt{x-3}=0\)

Bài 3:Cho hàm số \(y=(m-1)x+3\) có đò thị là đường thẳng (d)

a) Vẽ đường thẳng (d) khi m=2

b) Tìm m để đường thẳng (d) song song với đường thẳng \(y=2x+1\)

c) Tính khoảng cách từ gốc tọa độ đến đường thẳng được vẽ ở câu 1.

Bài 4: Cho điểm E thuộc nửa đường tròn tâm \(O\), đường kính MN. Kẻ tiếp tuyến tại N của nửa đường tròn tâm \(O\), tiếp tuyến này cắt đường thẳng ME tại D.

a) CMR: \(\Delta MEN\) vuông tại E. Từ đó chứng minh DE.DM=\(DN^2\)

b) Từ O kẻ OI vuông góc với ME\((I\in ME)\)

CMR: 4 điểm O,I,D,N cùng thuộc một đường tròn

c) Vẽ đường tròn đường kính OD cắt nửa đường tròn tâm O tại điểm thứ 2 là A.

CMR: DA là tiếp tuyến của đường tròn tâm O.

d) CMR: \(\widehat{DEA}=\widehat{DAM}\)

3
11 tháng 12 2018

cảm ơn mn nhé !

25 tháng 11 2019

bạn có thể cho mình đáp án bài hình ko

1. Chứng minh: \(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)=a-1\) 2. Cho ΔABC nội tiếp đường tròn (O), đường kính BC=6cm. Kẻ AH⊥BC (H∈BC). Biết HC=2HC. a) Tính AB, AC ? b) Vẽ điểm D đối xứng với B qua A. CD cắt (O) tại E. Gọi I là giao điểm của BE và AC. Chứng minh: DI // AH. c) Tiếp tuyến với (O) tại B cắt AC tại G. Chứng minh: DG là tiếp tuyến của đường tròn (C)...
Đọc tiếp

1. Chứng minh: \(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)=a-1\)

2. Cho ΔABC nội tiếp đường tròn (O), đường kính BC=6cm. Kẻ AH⊥BC (H∈BC). Biết HC=2HC.

a) Tính AB, AC ?

b) Vẽ điểm D đối xứng với B qua A. CD cắt (O) tại E. Gọi I là giao điểm của BE và AC. Chứng minh: DI // AH.

c) Tiếp tuyến với (O) tại B cắt AC tại G. Chứng minh: DG là tiếp tuyến của đường tròn (C) bán kính 6cm.

3. Vẽ đồ thị hàm số:

a) Vẽ đồ thị hàm số y=2x (d1) & y=-2x+4 (d2).

b) Xác định tọa độ giao điểm I của (d1) & (d2).

4. Cho hai đường tròn (O;R) và (O';R') tiếp xúc ngoài nhau tại A, (R>R'), đường thẳng OO' cắt (O) và (O') tại B và C. Qua trung điểm M của BC vẽ dây DE⊥BC.

a) Chứng minh: BECD là hình thoi.

b) Đoạn DC cắt (O') tại F. Chứng minh: A, E, F thẳng hàng.

c) Chứng minh: MF là tiếp tuyến của đường tròn.

5. Rút gọn:

a) \(5\sqrt{\dfrac{1}{5}}-\dfrac{1}{\sqrt{5}-2}\)

b) \(\sqrt{3-2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

c) \(A=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}+2\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}-2\right)\)

d) \(B=\dfrac{\sqrt{x^2}+\sqrt{9x^2}+\sqrt{45x^2}}{\sqrt{x}-\sqrt{16x}-\sqrt{25x}-\sqrt{180x}}\left(x>0\right)\)

6. Cho hàm số \(y=-\dfrac{x}{2}\) (d1) và hàm số \(y=2x-5\) (d2).

a) Xác định tọa độ giao điểm của (d1) & (d2). Vẽ (d1) & (d2) trên cùng mp tọa độ.

b) Cho đường thẳng (d3): y=ax+b. Xác định a và b để (d3) // (d1) và cắt (d2) tại điểm trên trục tung.

7. Từ A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB & AC với (O).

a) Chứng minh: OA là đường trung trực của BC.

b) OA cắt BC tại H. Chứng minh: HO.HA=HB.HC .

c) Đoạn OA cắt đường thẳng (O) tại I. Chứng minh: AB, AC là các tiếp tuyến của đường tròn (I) bán kính IH.

8.Cho \(A\left(1;-2\right),B\left(-2;7\right),C\left(\dfrac{-1}{3\sqrt{2}+3};\sqrt{2}\right)\)

a) Viết phương trình đường thẳng AB.

b) Chứng minh: ba điểm A, B, C thẳng hàng.

9. Cho đường tròn (O) đường kính AB=2R, dây CD⊥AB tại trung điểm H của OB.

a) Chứng minh: OCBD là hình thoi.

b) Tính CD theo R.

c) Chứng minh: ΔACD đều.

d) Gọi E là điểm đối xứng của A qua H. Chứng minh: EC & ED là các tiếp tuyến của đường tròn (O).

10. Tìm ĐKXĐ và rút gọn biểu thức:

\(M=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)^2\)

11. Trong mp tọa độ Oxy, cho 4 điểm: \(A\left(-2;0\right),B\left(0;1\right),C\left(1;0\right),D\left(0;-2\right)\)

a) Chứng minh: A và B thuộc đường thẳng d1: \(y=\dfrac{1}{2}x+1\)

b) Viết phương trình đường thẳng d2 đi qua C và D.

c) Vẽ d1 và d2, xác định tọa độ giao điểm I của chúng.

12. Cho nửa đường tròn (O) đường kính AB và M∈(O). Vẽ MH⊥AB, đường tròn đường kính MH cắt (O) tại N và cắt MA, MB tại E và F.

a) MEHF là hình gì?

b) Chứng minh: EF là tiếp tuyến của đường tròn ngoại tiếp ΔAEH.

c) MN cắt AB tại S. Chứng minh: MN.MS=ME.MA .

0
18 tháng 11 2022

Bài 2:

a: Để (d1)//(d2) thì k=4 và -2<>3

=>k=4

b: Để (d1) vuông góc với (d2) thì 4k=-1

=>k=-1/4

c: Để hai đường song song thì k=k-1

=>0=-1(loại)

d: Để hai đường song song thì k(k-1)=-1

=>k^2-k+1=0

=>\(k\in\varnothing\)