Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Hình bạn tự vẽ)
Ta có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)
Mà OM là tia phân giác của góc xOy, ON là tia phân giác của góc x'Oy' nên 2 góc xOM và x'ON bằng nhau
Mặt khác: \(\widehat{x'ON}+\widehat{NOy'}+\widehat{xOy'}=180^o\)
=> \(\widehat{xOM}+\widehat{xOy'}+\widehat{NOy'}=180^o\)
hay góc MON là góc bẹt => M, O, N thẳng hàng
Hạ \(OH\perp AB\) tại H. Theo đề bài, ta thấy ngay \(\widehat{OAH}=30^o\). Lại có \(OA=\dfrac{OH}{\sin OAH}=\dfrac{\dfrac{10a}{3}}{\dfrac{1}{2}}=\dfrac{20a}{3}\)
Mặt khác, \(AH=OA.\cos OAH=\dfrac{20a}{3}.\dfrac{\sqrt{3}}{2}=\dfrac{10a\sqrt{3}}{3}\). Từ đó suy ra \(AB=2AH=2.\dfrac{10a\sqrt{3}}{3}=\dfrac{20a\sqrt{3}}{3}\)
Do ABCD là hình vuông nên \(AB=BC=\dfrac{20a\sqrt{3}}{3}\)
Vậy thể tích hình trụ đã cho là \(V_{trụ}=\pi.OA^2.BC=\pi.\left(\dfrac{20a}{3}\right)^2.\dfrac{20a\sqrt{3}}{3}\) \(=\dfrac{8000\sqrt{3}}{27}.\pi.a^3\) (đvdt)
Trường hợp 1: k = 1 và O ∈ a thì A’B’ = AB hay a = a’.
- Trường hợp 2: k ≠ 1 và O ∉ a thì A’B’ // AB hay a’ // a
Vậy qua V(0,k) biến mp (α) thành mp(α') = mp(α).
- Nếu O ∈ mp(α) và k ≠ 1. Trên mp(α) lấy hai đường thẳng a, b cắt nhau tại I.
Qua phép vị tự tâm O tỉ số k :
+ Biến hai đường thẳng a, b thành 2 đường thẳng a’, b’ song song hoặc trùng với a,b
+ Biến giao điểm I thành điểm I’ là giao điểm của hai đường thẳng a’ và b’
HT
Do A' cách đều A; B; C \(\Rightarrow\) hình chiếu vuông góc H của A' lên (ABC) trùng tâm của tam giác ABC
\(\Rightarrow\widehat{A'AH}=60^0\)
\(AH=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\Rightarrow AA'=\dfrac{AH}{cos60^0}=\dfrac{2a\sqrt{3}}{3}=BB'=CC'=A'B=A'C\) (do A' cách đều A, B, C nên \(A'A=A'B=A'C\))
Ta có: \(\left\{{}\begin{matrix}A'H\perp\left(ABC\right)\Rightarrow A'H\perp BC\\AH\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(A'AH\right)\Rightarrow BC\perp AA'\)
\(\Rightarrow BC\perp BB'\Rightarrow B'C'CB\) là hình chữ nhật (hình bình hành có 1 góc vuông)
\(S_{BCC'B'}=BB'.BC=\dfrac{2a^2\sqrt{3}}{3}\)
Gọi M là trung điểm AB \(\Rightarrow A'M=\sqrt{A'A^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{a\sqrt[]{39}}{6}\)
\(S_{A'AB}=\dfrac{1}{2}A'M.AB=\dfrac{a^2\sqrt{39}}{12}\)
\(\Rightarrow S_{xq}=S_{BCC'B'}+4S_{A'AB}=...\)
a. Mặt phẳng (P) có (3;-2;2) là 1 vtpt nên d nhận (3;-2;2) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+3t\\y=2-2t\\z=-1+2t\end{matrix}\right.\)
b. \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) ; \(\overrightarrow{n_{\left(P'\right)}}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(P'\right)}}\right]=\left(2;0;-2\right)=2\left(1;0;-1\right)\)
\(\Rightarrow\) d nhận (1;0;-1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=-2\\z=3-t\end{matrix}\right.\)
c. \(\overrightarrow{u_{\Delta}}=\left(3;2;1\right)\) ; \(\overrightarrow{u_{\Delta'}}=\left(1;3;-2\right)\)
\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{u_{\Delta'}}\right]=\left(-7;7;7\right)=7\left(-1;1;1\right)\)
Đường thẳng d nhận (-1;1;1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=-1-t\\y=1+t\\z=3+t\end{matrix}\right.\)