Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
A x B C y z 120 160
Vẽ tia Bz nằm trong góc ABC sao cho: Ax // Bz
Do Ax // Cy => Ax // Bz // Cy
Ta có:
- xAB + ABz = 180o (trong cùng phía)
=> 120o + ABz = 180o
=> ABz = 180o - 120o
=> ABz = 60o (1)
- zBC + BCy = 180o (trong cùng phía)
=> zBC + 160o = 180o
=> zBC = 180o - 160o
=> zBC = 20o (2)
Từ (1) và (2), lại có: ABz + zBC = ABC
=> 60o + 20o = ABC
=> ABC = 80o = B
Vậy góc B = 80o
vẽ đường thẳng a đi qua B và a // xA ; a //yC
=> xAB + ABa =180 độ (góc trong cùng phía)
=> ABa = 180 - 120 = 60 độ
aBC + yCB =180 độ (góc trong cùng phía)
=> góc aBC = 180 độ - 160 độ = 20 độ
Vì ABa +aBC = góc B
Thay số ta có :
60độ + 20 độ =80 độ
=> góc B =80 độ (đpcm)
Từ O vẽ Oz // Mx.
Ta có : Oz // Mx
= > xMO = MOz (so le trong)
Ta lại có : Oz // Mx
Mà Mx // Ny (giả thiết)
=> Oz // Ny (Tiên đề Ơ - clít)
= > zOn + ONy = 180 (Trong cùng phía)
zOn = 180 - ONy = 180 - 110 = 70
Có : MON = MOz + zON = 20 + 70 = 90
=> MO vuông góc với ON
Ta có
\(\widehat{C1}+\widehat{C2}=180^0\) ( kề bù ) (1)
\(\widehat{C1}-\widehat{C2}=40^0\) (giả thiết ) (2)
Cộng (1) và (2)
\(\Rightarrow\left(\widehat{C1}+\widehat{C2}\right)+\left(\widehat{C1}-\widehat{C2}\right)=180^0+40^0\)
\(\Rightarrow2.\widehat{C1}=220^0\)
\(\Rightarrow\widehat{C1}=110^0\)
\(\Rightarrow\widehat{C2}=70^0\)
Mặt khác
\(\begin{cases}\widehat{C1}=\widehat{D2}\\\widehat{C1}=\widehat{D1}\end{cases}\) (a//b)
\(\Rightarrow\begin{cases}\widehat{D1}=70^0\\\widehat{D2}=110^0\end{cases}\)
Có: \(\widehat{C_1}+\widehat{C_2}=180\) (cạp góc kề bù)
=> \(\begin{cases}\widehat{C_1}+\widehat{C_2}=180\\\widehat{C_1}-\widehat{C_2}=40\end{cases}\) \(\Leftrightarrow\begin{cases}40+\widehat{C_2}+\widehat{C_2}=180\\\widehat{C_1}=40+\widehat{C_2}\end{cases}\)
\(\Leftrightarrow\begin{cases}2\widehat{C_2}=140\\\widehat{C_1}=40+\widehat{C_2}\end{cases}\)\(\Leftrightarrow\begin{cases}\widehat{C_2}=70\\\widehat{C_1}=110\end{cases}\)
=> \(\widehat{C_1}=\widehat{D_2}=110\) (cặp góc soletrong do a//b)
\(\widehat{C_2}=\widehat{D_1}=70\) (cặp góc soletrong do a//b)
Ta có: \(\widehat{C_1}=\widehat{D_1}=80^o\)
Mà: \(\widehat{C_1}\) và \(\widehat{D_1}\) đồng vị.
\(\Rightarrow\text{a//b}\)
Ta lại có: \(\widehat{A_4}=\widehat{B_2}=45^o\)
O A a B b x 1 1
Giải:
Kẻ Ox // Aa ta có:
\(\widehat{A_1}=\widehat{AOx}=38^o\) ( so le trong )
\(\Rightarrow\widehat{AOx}=38^o\)
Vì Ox // Aa, Aa // Bb nên Ox // Bb
\(\Rightarrow\widehat{B_1}=\widehat{xOB}=133^o\) ( so le trong )
\(\Rightarrow\widehat{xOB}=133^o\)
\(\Rightarrow\widehat{AOB}=\widehat{AOx}+\widehat{xOB}\)
hay \(\widehat{AOB}=38^o+133^o\)
\(\Rightarrow\widehat{AOB}=171^o\)
Vậy \(\widehat{AOB}=171^o\)
Bạn tham khảo và làm tương tự như câu này nha !
Câu hỏi của Trần Nguyễn Hoài Thư - Toán lớp 7 | Học trực tuyến
Do AC và BD đều vuông góc với CD => AC // BD
Vẽ đường thẳng dd' đi qua E sao cho CA // dd'; BD // dd'
C D A B d d' 45 60 E
Do AC // dd' mà CAE và AEd' là 2 góc so le trong => CAE = AEd' = 45o
Do BD // dd' mà BEd và BEd' là 2 góc so le trong => BEd = BEd' = 60o
Lại có: AEd' + BEd' = AEB
=> 45o + 60o = AEB
=> AEB = 105o
Do AC và BD đều vuông góc với CD => AC // BD
Vẽ đường thẳng dd' đi qua E sao cho CA // dd'; BD // dd'
C D A B d d' 45 60 E
Do AC // dd' mà CAE và AEd' là 2 góc so le trong => CAE = AEd' = 45o
Do BD // dd' mà BEd và BEd' là 2 góc so le trong => BEd = BEd' = 60o
Lại có: AEd' + BEd' = AEB
=> 45o + 60o = AEB
=> AEB = 105o
Xét tam giác ABC có \(\widehat{BAC}+\widehat{ACB}+\widehat{B}=180\Rightarrow\widehat{BAD}+\widehat{DAC}+\widehat{ACD}+\widehat{BAD}+\widehat{B}=180\) độ
hay \(20+\widehat{DAC}+25+\widehat{ACD}+50=180\) độ
\(\Rightarrow\widehat{DAC}+\widehat{ACD}=85\) độ
Xét tam giác ADC có \(\widehat{DAC}+\widehat{ACD}+\widehat{ADC}=180\Rightarrow\widehat{ADC}=180-85=95\) độ
Tick hộ nha