Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì BM là tia pg của \(\widehat{ABC}\) (gt)
=>\(\widehat{ABM}=\widehat{MBC}\)
Mà \(\widehat{MBC}=70\left(gt\right)\\\)
=> \(\widehat{ABM}=\widehat{MBC}=70\)
Có : \(\widehat{ABC}=\widehat{ABM}+\widehat{MBC}=70+70=140\)
Có: \(\widehat{ABC}+\widehat{BCM}=140+40=180\)
=> AB//MC
Giải:
a) Ta thấy \(\widehat{A}+\widehat{D}=180^o\) và 2 góc này ở vị trí trong cùng phía nên AB // CD
Vậy AB // CD
b) Ta có: \(\widehat{A}+\widehat{D}+\widehat{C}+\widehat{ABC}=360^o\) ( vì tổng các góc của 1 hình tứ giác bằng \(360^o\) )
\(\Rightarrow120^o+60^o+30^o+\widehat{ABC}=360^o\)
\(\Rightarrow\widehat{ABC}+210^o=360^o\)
\(\Rightarrow\widehat{ABC}=150^o\)
Vì AB // CD nên \(\widehat{C}=\widehat{xBC}=30^o\) ( so le trong )
Vậy \(\widehat{ABC}=150^o,\widehat{xAB}=30^o\)
Giải:
a) Vẽ tia đối của AD là AO
Ta có:
\(\widehat{DAC}+\widehat{CAO}=180^0\) (Hai góc kề bù)
\(\Leftrightarrow140^0+\widehat{CAO}=180^0\)
\(\Leftrightarrow\widehat{CAO}=40^0\)
\(\Leftrightarrow\widehat{CAO}=\widehat{C}\left(=40^0\right)\)
\(\Leftrightarrow AD//CF\) (Vì có hai góc so le trong bằng nhau)
b) Ta có:
\(\widehat{CAO}+\widehat{BAO}=\widehat{BAC}\)
\(\Leftrightarrow40^0+\widehat{BAO}=90^0\)
\(\Leftrightarrow\widehat{BAO}=50^0\)
\(\Leftrightarrow\widehat{BAO}=\widehat{B}\left(=50^0\right)\)
\(\Leftrightarrow AD//BE\) (Vì có hai góc so le trong bằng nhau)
Vậy ...
Câu a chứng minh theo hai góc trong cung phía bù nhau cũng được
Dễ thấy MR // PQ
\(\Rightarrow\widehat{RMP}+\widehat{MPQ}=180^0\)
\(\Rightarrow\widehat{RMP}+50^0=180^0\)
\(\Rightarrow\widehat{RMP}=30^0\)
Có: \(\widehat{BAD}+\widehat{ADC}=180\)
=> AB//CD ( cặp góc trong cùng phía bù nhau)
b) Có: AB//CD(cmt)
Mà: AB \(\perp\) BC (gt)
=> CD\(\perp\) BC
Giải:
a) Ta thấy \(\widehat{BAD}+\widehat{ADC}=180^o\) và 2 góc này ở vị trí trong cùng phía nên suy ra AB // CD
b) Vì AB // CD, AB _|_ BC nên suy ra BC _|_ CD
Vậy a) AB // CD
b) BC _|_ CD
D x E F z y 1 2
Giải:
Kẻ Ey // Dx và \(Ey\in\widehat{E}\)
\(\Rightarrow\widehat{E_1}+\widehat{D}=180^o\) ( cặp góc trong cùng phía )
\(\Rightarrow\widehat{E_1}+123^o=180^o\)
\(\Rightarrow\widehat{E_1}=57^o\)
Mà \(\widehat{E}=\widehat{E_1}+\widehat{E_2}\)
\(\Rightarrow137^o=\widehat{E_2}+57^o\)
\(\Rightarrow\widehat{E_2}=80^o\)
Ta thấy \(\widehat{F}+\widehat{E_2}=180^o\) và 2 góc này ở vị trí trong cùng phía nên Ey // Fz
Vì Ey // Dx, Ey // Fz nên suy ra Dx // Fz
Vậy Dx // Fz
F C A D B E 1 2 3 x
Kéo dài DA
Ta có:
\(\widehat{A3} + \widehat{C} = 140^O + 40^O = 180^O\)
mà 2 góc này nằm ở vị trí trong cùng phía
\(\Rightarrow\) CF // DA (dhnb)
\(\widehat{A3} + \widehat{A1} = 180^O\) (kề bù)
\(140^O + \widehat{A1} = 180^O (\widehat{A3} = 140^O(gt))\)
\(\widehat{A1} = 180^O - 140^O\)
\(\widehat{A1} = 40^O\)
\(\widehat{A1} + \widehat{A2} = \widehat{BAC}\) (Ax nằm giữa 2 tia AB và AC)
\(40^O + \widehat{A2} = 90^O (\widehat{A1} = 40^O(cmt); AB \perp AC (gt))\)
\(\widehat{A2} = 90^O - 40^O\)
\(\widehat{A2} = 50^O\)
\(\Rightarrow\)\(\widehat{A2} = \widehat{B} = 50^O\)
mà 2 góc này nằm ở vị trí so le trong.
\(\Rightarrow\) BE // DA (dhnb)
mà CF // DA (cmt)
\(\Rightarrow\) CF // BE (Định lí 3 trong bìa từ vuông góc đến song song)
a) Có \(\widehat{DAC}+\widehat{C}=140^0+40^0=180^0\)
mà hai góc nằm ở vị trí hai góc so le trong
\(\Rightarrow\)\(AD//CF\)
b) Có \(\widehat{DAB}=360^0-\widehat{BAC}-\widehat{DAC}=130^0\)
\(\Rightarrow\)\(\widehat{DAB}+\widehat{B}=130^0+50^0=180^0\)
mà hai góc nằm ở vị trí hai góc so le trong
\(\Rightarrow\)\(AD//EB\)
hey guys, 2k mấy vại