Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCNMHKIDE
a) Vì BI; CK cùng vuông góc với AM => BI // CK => góc MCK = góc MBI ( 2 góc so le trong)
mà có MB = MC (do M là TĐ của BC)
=> tam giác vuông MCK = MBI (cạnh huyền - góc nhọn)
=> BI = CK ( 2 canh t.ư)
+) tam giác BCK = CBI ( vì: BC chung; góc BCK = góc CBI; CK = BI)
=> BK = CI (2 cạnh t.ư)
và góc KBC = góc ICB ( 2 góc t.ư) mà 2 góc này ở vị trí SLT => BK // CI
b) Gọi E là trung điểm của MC
xét tam giác vuông MKC có: KE là trung tuyến ứng với cạnh huyền MC => EK = MC/ 2
Xét tam giác vuông MNC có: NE là trung tuyến ứng với cạnh huyền MC => NE = MC/2
Áp dụng bất đẳng thức tam giác trong tam giác KNE có: KN < EK + NE = MC/ 2 + MC/ 2 = MC
vậy KN < MC
c) +) ta luôn có: IM = MK (theo câu a) => M là trung điểm của IK
+) Nếu AI = IM mà A; I; M thẳng hàng => I là trung điểm của AM => BI là trung tuyến của tam giác BAM
mặt khác, BI vuông góc với AM
=> BI vừa là đường cao vừa là đường trung tuyến trong tam giác BAM => tam giác BAM cân tại B
=> BA = BM mà BM = MA (do AM là trung tuyến ứng với cạnh huyền BC)
=> tam giác BAM đều => góc BAM = 60o
+) ta có : MA = MD (gt) mà MA = IM + IA ; IM = MK
=> MD = MK + IA mà MD = MK + KD (do MI = MK < MA = MD => K nằm giữa M và D)
=> IA = KD
=> nếu AI = IM => AI = IM = MK = KD
vậy để AI = IM = MK = KD thì tam giác ABC là tam giác vuông có góc B = 60o
d) +) Tam giác MAC = tam giác MDB ( MA = MD ; góc AMC = góc DMB do đối đỉnh; MC = MB)
=> góc DBC = góc BCA mà 2 góc này ở vị trí SLT => BD // AC
lại có MN vuông góc với AC => MN vuông góc với BD => MN là là đường cao của tam giác BMD
+) Xét tam giác BMD có: BI ; DH ; MN là 3 đường cao => chúng đồng quy => đpcm
a) FN là đường trung bình của tam giác ADC
\(\Rightarrow FN=\frac{AD}{2}\)
EM là đường trung bình của tam giác ADB
\(\Rightarrow EM=\frac{AD}{2}\)
NE là đường trung bình của tam giác ABC
\(\Rightarrow EN=\frac{CB}{2}\)
FM là đường trung bình của tam giác BDC
\(\Rightarrow FM=\frac{CB}{2}\)
Mà AD = BC (gt)
\(\Rightarrow FN=EM=EN=FM=\frac{AD}{2}=\frac{CB}{2}\)
\(\Rightarrow FN=EM=EN=FM\)
=> Tứ giác FNEM là hình thoi
b) FM là đường trung bình của tam giác BDC
\(\Rightarrow FM//BC\Leftrightarrow\widehat{DFM}=\widehat{DCB}=80^o\)
FN là đường trung bình của tam giác ADC
\(\Rightarrow FN//AD\Leftrightarrow\widehat{CFN}=\widehat{CDA}=40^o\)
Ta có \(\widehat{CFN}+\widehat{MFN}+\widehat{DFM}=180^o\)
\(\Leftrightarrow40^o+\widehat{MFN}+80^o=180^o\Leftrightarrow\widehat{MFN}=60^o\)
Hình tự vẽ nhé , với lại chỉ ghi hướng cho nhan thôi chứ làm chi tiết lâu lắm
a)Chứng minh AG vuông góc với HF ( để ý góc D = 60 đỏồi tính toán các góc để có được góc = 90 độ)
Gọi FG giao với BD tại M, thì dễ dàng chứng minh được M là trung điểm của FG => IM là đường trung bình
=> IM //AG
Mà AG vuông góc với HF => IM vuông góc với HF
gọi PG giao với MH=O, thì dễ dàng chứng minh PHGM là hình chữ nhật => O là trung điểm của PG và HM
thì ta có tam giác HIM vuông tại I có O là trung điểm của HM => IO=1/2HM=1/2PG => tam giác PIG vuông tại I(ĐPCM)
hóng các cao nhân ý b ^_^
B A C D E F I
Gọi I là tâm của ABCD.
Ta có:
\(\widehat{IFE}+\widehat{IFA}=90^0\)
\(\widehat{ICB}+\widehat{CBI}=90^0\)
Mặt khác: \(\widehat{IFA}=\widehat{BDA}=\widehat{CBI}\)
=> \(\widehat{IFE}=\widehat{ICB}\)
=> IFCE nội tiếp.
=> ^EFC = ^EIC = ^ECI = 900 - CBI = 650
=> ^DFC = 1800 - ^EFC = 1150
Vậy \(\widehat{DFC}=115^0\)