K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

ABCNMHKIDE

a) Vì BI; CK cùng vuông góc với AM => BI // CK => góc MCK = góc MBI ( 2 góc so le trong)

mà có MB = MC (do M là TĐ của BC)

=> tam giác vuông MCK = MBI (cạnh huyền - góc nhọn)

=> BI = CK ( 2 canh t.ư)

+) tam giác BCK = CBI ( vì:  BC chung; góc BCK = góc CBI; CK = BI)

=> BK = CI (2 cạnh t.ư)

và góc KBC = góc ICB ( 2 góc t.ư) mà 2 góc này ở vị trí SLT => BK // CI

b) Gọi E là trung điểm của MC 

xét tam giác vuông MKC có: KE là trung tuyến ứng với cạnh huyền MC => EK = MC/ 2

Xét tam giác vuông MNC có: NE là trung tuyến ứng với cạnh huyền MC => NE = MC/2

Áp dụng bất đẳng thức tam giác trong tam giác KNE có: KN < EK + NE = MC/ 2 + MC/ 2 = MC 

vậy KN < MC

c) +) ta luôn có: IM = MK (theo câu a) => M là trung điểm của IK 

    +)  Nếu AI = IM  mà A; I; M thẳng hàng => I là trung điểm của AM => BI là trung tuyến của tam giác BAM 

mặt khác, BI vuông góc với AM 

=> BI vừa là đường cao vừa là đường trung tuyến trong tam giác BAM => tam giác BAM cân tại B

=> BA = BM mà BM = MA (do AM là trung tuyến ứng với cạnh huyền BC)

=> tam giác BAM đều => góc BAM = 60o

    +) ta có : MA = MD (gt) mà MA = IM + IA ; IM = MK 

=> MD = MK + IA mà MD = MK + KD (do MI = MK < MA = MD => K nằm giữa M và D)

=> IA = KD 

=> nếu AI = IM => AI = IM = MK = KD

vậy để AI = IM = MK = KD thì tam giác ABC là tam giác vuông có góc B = 60o

d) +) Tam giác MAC = tam giác MDB ( MA = MD ; góc AMC = góc DMB  do đối đỉnh; MC = MB)

=> góc DBC = góc BCA mà 2 góc này ở vị trí SLT => BD // AC

lại có MN vuông góc với AC => MN vuông góc với BD => MN là là đường cao của tam giác BMD

+) Xét tam giác BMD có: BI ; DH ; MN là 3 đường cao => chúng đồng quy => đpcm

5 tháng 1 2020

B A C D E F I

Gọi I là tâm của ABCD.
Ta có:
\(\widehat{IFE}+\widehat{IFA}=90^0\) 
\(\widehat{ICB}+\widehat{CBI}=90^0\)
Mặt khác: \(\widehat{IFA}=\widehat{BDA}=\widehat{CBI}\)
=> \(\widehat{IFE}=\widehat{ICB}\)
=> IFCE nội tiếp.
=> ^EFC = ^EIC = ^ECI = 900 - CBI = 650
=> ^DFC = 1800 - ^EFC = 1150

Vậy \(\widehat{DFC}=115^0\)

17 tháng 12 2023

a: Xét tứ giác AEDF có

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

=>AEDF là hình chữ nhật

b: Xét ΔABC có

D là trung điểm của BC

DE//AC
Do đó; E là trung điểm của AB

Xét ΔBAC có

D là trung điểm của BC

DF//AB

Do đó: F là trung điểm của AC

Xét tứ giác ADBM có

E là trung điểm chung của AB và DM

=>ADBM là hình bình hành

c: Xét tứ giác ADCN có

F là trung điểm chung của AC và DN

=>ADCN là hình bình hành

=>AN//CD và AN=CD

Ta có: ADBM là hình bình hành

=>AM//BD và AM=BD

Ta có: AN//CD

AM//BD

mà B,D,C thẳng hàng

nên AN//BC và AM//BC

mà AN,AM có điểm chung là A

nên N,A,M thẳng hàng

Ta có: AM=BD

AN=CD

mà BD=DC

nên AM=AN

mà M,A,N thẳng hàng

nên A là trung điểm của MN

17 tháng 12 2023

cảm ơn bạn

11 tháng 8 2016

ghét hè. mi cứ đi hỏi lung tung nik. trách chi bựa đến giừ bài tập làm đc

3 tháng 8 2017

kéo dài DA và CB cắt nhau tại K 

AB là đường trung bình ( AB//DC và 2AB = DC) 

=> B là trung điểm KC 

=> DB là trung tuyến  ΔKDC vuông tại D 

=> DB = BC = DC 

=> tam giác DBC đều 

Vậy góc KCD= 60độ 

tổng 4 góc trong tứ giác ABCD = 360độ 

=> góc ABC = 120độ

cách 2

Kẻ BH⊥CD suy ra tứ giác ABHD là hình chữ nhật

nên ^ABH=90* (1)

Xét ∆BHC vuông tại H có HC=1/2 BC nên ^HBC=30* (2)

Từ (1) và (2) suy ra ^ABC=^ABH+^HBC=90*+30*=120*

Bài 1 : Cho tam giác nhọn ABC , gọi H là trực tâm tam giác , M là trung điểm BC . Gọi D là điểm đối xứng của H qua M .a ) Chứng minhcác tam giác ABD và ACD vuôngb ) Gọi I là trung điểm AD . Chứng minh IA = IB =IC = IDBài 2 : Cho tam giác ABC vuông tại A có góc B bằng 60 độ ,  kẻ Ax song song BC . Trên tia Ax lấy điểm D sao cho : AD =DCa ) Tính các góc BAD và góc DACb ) Chứng minh tứ giác ABCD là hình thang cân c )...
Đọc tiếp

Bài 1 : Cho tam giác nhọn ABC , gọi H là trực tâm tam giác , M là trung điểm BC . Gọi D là điểm đối xứng của H qua M .

a ) Chứng minhcác tam giác ABD và ACD vuông

b ) Gọi I là trung điểm AD . Chứng minh IA = IB =IC = ID

Bài 2 : Cho tam giác ABC vuông tại A có góc B bằng 60 độ ,  kẻ Ax song song BC . Trên tia Ax lấy điểm D sao cho : AD =DC

a ) Tính các góc BAD và góc DAC

b ) Chứng minh tứ giác ABCD là hình thang cân 

c ) Gọi E là trung điểm BC . Chứng minh ADEB là hình thoi

Bài 3 :  Cho hình vuông ABCD , E là trung điểm trên cạnh DC , F là điểm trên tia đối tia BC sao cho BF = DE .

a) Cminh : tam giác AEF vuông cân 

b ) Gọi I là trung điểm EF . Chứng minh I thuộc BD 

c ) Lấy K đối xứng A qua I . Chứng minh AEFK là hình vuông ( Hướng dẫn : Từ E kẻ EP // BC , P thuộc BD 

3
30 tháng 10 2019

Bài 1

A A A B B B C C C H H H M M M D D D I I I a/Xét tứ giác BHCD có M đồng thời là trung điểm của cả HD và BC 

Do đó BHCD là hình bình hành \(\Rightarrow BH//CD,CH//BD\)

Mặt khác vì ta có H là trực tâm của tam giác ABC nên \(BH\perp AC,CH\perp AB\)

Suy ra \(BD\perp AB,CD\perp AC\Rightarrow\Delta ABD,\Delta ACD\)là tam giác vuông 

b/Xét \(\Delta ABD,\Delta ACD:\widehat{ABD}=\widehat{ACD}=90^0\);I là trung điểm của cạnh huyền chung AD

Suy ra \(IA=IB=IC=ID\)

30 tháng 10 2019

Bài 2 α = 60° α = 60° α = 60° A A A B B B C C C D D D E E E a/Vì AD=CD(gt) nên D nằm trên trung trực của đoạn AC suy ra \(\widehat{DAC}=\widehat{ECA}=90^0-60^0=30^0\)

Suy ra \(\widehat{BAD}=90^0+\widehat{DAC}=120^0\)

b/Trước hết ta thấy ABCD đã là hình thang,nên ta đi chứng minh \(\widehat{BCD}=\widehat{ABC}=60^0\)

Ta có \(\widehat{BCD}=\widehat{DCA}+\widehat{ACB}=\widehat{DAC}+30^0=30^0+30^0=60^0\)

Vậy ABCD là hình thang cân

c/Ta có \(\Delta BCE:AE=BE,\widehat{ABE}=60^0\Rightarrow AE=BE=AB\)

\(\widehat{ADE}=\frac{1}{2}.\widehat{ADC}=60^0;\widehat{BAD}=120^0=\widehat{BED}\)

Suy ra ABED là hình bình hành 

Mà ta còn có AB=EB 

Vậy ABED là hình thoi