K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2016

a / hình bình hành 

b/ AC=BD ; AB>CD ; AB<AC<CD;AB<BD<CD

c/hình vuông

10 tháng 2 2016

(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD  (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD                                 (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC                                                        (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN 
=> MNPQ là hình thoi

 

Xét ΔMNQ có 

A là trung điểm của MN

D là trung điểm của MQ

Do đó: AD là đường trung bình của ΔMNQ

Suy ra: AD//NQ và AD=NQ/2(1)

Xét ΔNPQ có 

B là trung điểm của NP

C là trung điểm của QP

Do đó: BC là đường trung bình của ΔNPQ
Suy ra: BC//NQ và BC=NQ/2(2)

Từ (1) và (2) suy ra AD//BC và AD=BC

Xét ΔMNP có 

A là trung điểm của MN

B là trung điểm của NP

Do đó: AB là đường trung bình của ΔMNP

Suy ra: AB=MP/2=NQ/2(3)

Từ (1) và (3) suy ra AD=AB

Xét tứ giác ABCD có 

AD//BC

AD=BC

Do đó: ABCD là hình bình hành

mà AB=AD

nên ABCD là hình thoi

DD
13 tháng 7 2021

a) Xét tam giác \(ABC\):

\(M,N\)lần lượt là trung điểm của \(AB,AC\)nên \(MN\)là đường trung bình của tam giác \(ABC\)

suy ra \(MN=\frac{1}{2}BC,MN//BC\).

Xét tam giác \(DBC\):

\(P,Q\)lần lượt là trung điểm của \(DC,DB\)nên \(PQ\)là đường trung bình của tam giác \(DBC\)

suy ra \(PQ=\frac{1}{2}BC,PQ//BC\).

Suy ra \(PQ=MN,PQ//MN\)

nên \(MNPQ\)là hình bình hành. 

b) - \(MNPQ\)là hình thoi. 

 \(MNPQ\)là hình thoi suy ra \(MN=NP\).

Tương tự ý a) ta cũng chứng minh được \(NP=\frac{1}{2}AD\)

do đó suy ra \(AD=BC\)nên \(ABCD\)là hình thang cân. 

\(MNPQ\)là hình chữ nhật.

\(MNPQ\)là hình chữ nhật suy ra \(MN\perp PQ\).

Chứng minh tương tự ý a) ta cũng có \(NP//AD\)

suy ra \(BC\perp AD\).

\(MNPQ\)là hình vuông.

\(MNPQ\)là hình vuông khi vừa là hình thoi vừa là hình chữ nhật. 

21 tháng 11 2017

a) Nối A với C

Xét tam giác ABC có: M là trung điểm của AB

                                    N là trung điểm của BC

=> MN là đường trung bình của tam giác ABC

=> MN = 1/2 AC   (1)

Chứng minh tương tự, ta được: PQ là đường trung bình của tam giác ADC

=> PQ = 1/2 AC    (2)

Từ (1)(2) => MN = PQ ( cùng bằng 1/2 AC)

b) Ta có: MN = PQ = MQ = PN (cùng  = 1/2 AC = 1/2 BD)

=> MNPQ là hình thoi   ( 3)

Mặt khác: AC vuông góc với BD (ABCD là hình thoi)

                 MN song song với AC

=> Mn vuông góc với BD

Và BD song song với NP

=> MN vuông góc với NP

=> góc MNP = 90 độ  (4)

Từ (3) và (4) => MNPQ là hình vuông

21 tháng 11 2017

Nối AC,BD

a) Ta có:

M là TĐ của AB (gt) ; N là TĐ của BC (gt) \(\Rightarrow\)MN là đường trung bình của tam giác ABC \(\Rightarrow\)MN =\(\frac{1}{2}AC\), MN song song với AC

Tương tự:  \(PQ=\frac{1}{2}AC\); PQ song song với AC   ;      MQ song song với BD, NP song song với BD

nên MN=PQ (đpcm)

b) Theo câu a) ta có : 

MN song song với PQ ,MQ song song với NP nên tứ giác MNPQ là hình bình hành (1)

Lại có :AC vuông góc với BD nên MN vuông góc với MQ hay góc M = 90 độ  (2)

Từ (1) và (2)  tứ giác MNPQ là hình chữ nhật

22 tháng 2 2018

A M B D Q N C P

a) \(\Delta ABC\)có : 

MA = MB ( gt )

NB = NC ( gt )

=> MN là đường trung bình của \(\Delta ABC\)

=> \(MN//AC\)\(;\)\(MN=\frac{1}{2}AC\)

CMTT : \(PQ//AC\)\(;\)\(PQ=\frac{1}{2}AC\)

=> MN // PQ ; MN = PQ .

=> Tứ giác MNPQ là hình bình hành .

b) Theo câu a) , Ta có : 

MQ // BD và \(MQ=\frac{1}{2}BD\) ; NP // BD và \(NP=\frac{1}{2}BD\)

+) Hình bình hành MNPQ là hình thoi 

=> MN = MQ <=> AC = BD ( Vì \(MN=\frac{1}{2}AC\)\(MQ=\frac{1}{2}BD\)

=> ABCD là hình thang cân .

+) Hình bình hành MNPQ là hình chữ nhật 

\(\Rightarrow\) \(\widehat{NMQ}=90^0\)\(\Leftrightarrow\)\(MN\perp MQ\)\(\Leftrightarrow\)\(AC\perp BD\)( Vì MN // AC ; MQ // BD ) 

=> Hình thang thang ABCD có 2 đường chéo vuông góc với nhau .

+) Hình bình hành MNPQ là hình vuông 

\(\Rightarrow\)\(MN=MQ\)\(;\)\(\widehat{NMQ}=90^0\) \(\Leftrightarrow\)\(AC=BC\)và \(AC\perp BD\)

=> ABCD là hình thang cân có 2 đường chéo vuông góc với nhau . 

23 tháng 8 2016

Em tự vẽ hình nhé. Ý sau cô nói rõ yêu cầu hơn là chứng minh hình bình hành MNPQ có chu vi bằng tổng độ dài hai đường chéo của tứ giác ABCD.

Xét tứ giác EFMN có OF = ON; OE = OM nên nó là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Vậy thì MN // EF // AC và MN = EF = AC / 2 (Vì EF là đường trung bình tam giác BAC).

Hoàn toàn tương tự: QP // GH // AC và QP = GH = AC/2.

Vậy MNPQ là hình bình hành (Cặp cạnh đối song song và bằng nhau).

Khi đó ta có:

 \(p_{MNPQ}=PQ+PN+NM+MQ=\left(PQ+MN\right)+\left(MQ+PN\right)=AC+BD.\)

Vậy ta đã chứng minh xong bài toán.

24 tháng 9 2017

Cô ơi em ko hiểu.Theo em thì ta phải cm MN//=AC và PQ//=AC