\(\frac{1}{h^2}=\frac{1}{m^2}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2017

Kẻ OE,OF,OG,OH lần lượt là đg cao của các tam giác vuông DOC,AOB,AOD,BOC.

Vì OE=OF=OG=OH=h

và:AC=m;OA=OC-->OA=OC=m/2

tg tự với DB=n;DO=DB ta cũng có:

DO=OB=n/2

Xét tam giác vuông AOB (O= 90 độ do hình thoi có 2 đg chéo vuông góc)

và OF là đường cao có:

1/OF=1/OA^2+1/OB^2

-->1/h^2=1/\(\left(\frac{m}{2}\right)\)^2+1/(n/2)^2                        (1)

CM tương tự vs các tam giác vuông còn lại đều đc kquar như trên đánh số (1),(2),(3),(4)

Cộng (1),(2), (3),(4) ta đc:4/h^2 =16/m^2+16/n^2

Chia cả  2 vế cho 16 ta đc điều phải cm

8 tháng 8 2019

A B C D O H K I

+ Qua C kẻ đg thẳng vuông góc với AC và cắt AD tại I

Gọi H,K lần lượt là hình chiếu của O,C trên AD.

+ OD là đg trung bình của ΔACI

=> CI = 2OD = BD = n

+ OH là đg trung bình của ΔACK

=> CK = 2OH = 2h

+ ΔACI vuông tại C, đg cao CK

\(\Rightarrow\frac{1}{CK^2}=\frac{1}{AC^2}+\frac{1}{CI^2}\)

\(\Rightarrow\frac{1}{\left(2h\right)^2}=\frac{1}{m^2}+\frac{1}{n^2}\Rightarrow\frac{1}{m^2}+\frac{1}{n^2}=\frac{1}{4h^2}\)

13 tháng 7 2020

+ Qua C kẻ đg thẳng vuông góc với AC và cắt AD tại I

Gọi H,K lần lượt là hình chiếu của O,C trên AD.

+ OD là đg trung bình của t/g ACI

=> CI = 2 OD = BD = n

+ OH là đg trung bình của t/g ACK

=> CK = 2 OH = 2h

+ t/g ACI vuông tại C, đg cao CK

Suy ra \(\frac{1}{CK^2}=\frac{1}{AC^2}+\frac{1}{CI^2}\)

\(< =>\frac{1}{\left(2h\right)^2}=\frac{1}{m^2}+\frac{1}{n^2}\)

\(< =>\frac{1}{4h^2}=\frac{1}{m^2}+\frac{1}{n^2}\)

Vậy ta có điều phải chứng minh

29 tháng 7 2020

xét \(_{\Delta}\)AOB vuông tại O có:

\(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\) hay \(\frac{1}{h^2}=\frac{1}{\left(\frac{m}{2}\right)^2}+\frac{1}{\left(\frac{n}{2}\right)^2}\)

\(\Leftrightarrow\frac{1}{h^2}=4\left(\frac{1}{m^2}+\frac{1}{n^2}\right)\)

=> đpcm

29 tháng 7 2020

A B C D O h m n

Y
23 tháng 6 2019

18. a) Dễ cm : AE = AF

+ EF // BH \(\Rightarrow\frac{AF}{AB}=\frac{AC}{AH}\Rightarrow\frac{AE}{AC}=\frac{AC}{AH}\)

\(\Rightarrow AC^2=AE\cdot AH\Rightarrow AC=\sqrt{AE\cdot AH}\)

b) Qua C kẻ đg thẳng // với AD cắt AB tại I

+ AD là đg TB của ΔBCI

=> CI = 2AD \(\Rightarrow CI^2=\left(2AD\right)^2=4AD^2\)

+ CI // AD => CI ⊥ BC

+ ΔBCI vuông tại C, đg cao CF

\(\Rightarrow\frac{1}{CF^2}=\frac{1}{BC^2}+\frac{1}{CI^2}=\frac{1}{BC^2}+\frac{1}{4AD^2}\)

bài cuối tương tự câu a) bài trên

Y
23 tháng 6 2019

16. Qua B kẻ đg thẳng // với AC cắt CD tại I

Gọi BH là chiều cao của hình thang ABCD

+ BI // AC => BI ⊥ BD

+ Tứ giác ABIC là hbh => AB = CI

=> AB + CD = CD + CI = DI

+ ΔBDH vuông tại H

\(\Rightarrow DH=\sqrt{BD^2-BH^2}=20\) ( cm )

+ ΔBDI vuông tại B, đg cao BH

\(\Rightarrow BD^2=DH\cdot DI\)

\(\Rightarrow DI=\frac{29^2}{20}=42,05\) ( cm )

=> Độ dài đg TB của hình thang ABCD là :

\(\frac{1}{2}\left(AB+CD\right)=\frac{1}{2}DI=21,025\) ( cm )

21 tháng 6 2018

A D B C H

qua A kẻ đường thẳng // với DB và giao CB tại K

ta có : tứ giác akbd là hình bình hành (do ak//db,ad//bk)

=>ak=bd=n

ta co: ak//bd

mà bd vuông góc với ac => ak vuông goc với ac

xet tam giac vuong ack co:

\(\frac{1}{ah^2}\)=\(\frac{1}{ac^2}\)+\(\frac{1}{ak^2}\)

hay 1/h^2=1/m^2+1/n^2