Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
C A B E H D
Ta có: \(\widehat{ACB}+\widehat{ABC}=90^o\)
Xét: \(\Delta ABC\text{ và }\widehat{NBA}\)
\(\widehat{CAB}=\widehat{ANB}=90^o\)
\(\Rightarrow\Delta ABC~\Delta AHB\)
b) \(\frac{AB}{NB}=\frac{AC}{NA}\)
\(\Leftrightarrow\frac{AB}{AC}=\frac{NB}{NA}\left(1\right)\)
Chứng minh tương tự:
\(\Delta ABC~\Delta AHB\)
\(\frac{AN}{AB}-\frac{HC}{AC}\Rightarrow\frac{AB}{AC}=\frac{AN}{NC}\left(2\right)\)
\(\text{Từ (1) và (2) }\Rightarrow\frac{NB}{NA}=\frac{NA}{NC}\Rightarrow AB^2=BH.BC\left(đ\text{pcm}\right)\)
Xét tam giác vuông.
Áp dụng định lý Pi-ta-go, ta có:
\(DB^2=AB^2+AD^2=6^2+8^2=100\)
\(\Rightarrow DB=\sqrt{100}=10\left(cm\right)\)
Bài 2:
1 1 2 2 A B C D
a) Xét \(\Delta OAV\text{ và }\Delta OCD\)
Có: \(\widehat{AOB}=\widehat{COD}\left(đ^2\right)\)
\(\widehat{A_1}=\widehat{C_1}\left(\text{so le}\right)\)
\(\Rightarrow\Delta OAB~\Delta OCD\)
\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\Rightarrow\frac{DO}{DB}=\frac{CO}{CA}\)
b) Ta có: \(AC^2-BD^2=DC^2-AB^2\)
\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)
\(\Delta\text{ vuông }ABC\left(\text{theo định lý Pi-ta-go}\right)\)
\(AC^2-DC^2=AD^2\left(1\right)\)
\(\Delta\text{ vuông }BDA\text{ có }\left(\text{theo định lý Pi-ta-go}\right)\)
\(BD^2-AB^2=AD^2\)
\(\text{Từ (1) và (2) }\Rightarrowđ\text{pcm}\)
Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé
a, Xét tam giác BDA và tam giác KDC có: Góc BDA= Góc KDC(đối đỉnh)
Góc B= Góc K(90 độ)
=>Tam giác BDA đồng dạng với tam giác KDC(g.g)
=>\(\frac{DB}{DA}=\frac{DK}{DC}\)
b, Xét tam giác DBK và tam giác DAC có: Góc BDK= Góc DAC(đối đỉnh)
\(\frac{DB}{DA}=\frac{DK}{DC}\)
=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)
c, Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại B, ta có:
BC2=AC2-AB2
BC2=52-32
BC2=16
BC=4(cm)
Vì AD là phân giác
=>\(\frac{AB}{AC}=\frac{BD}{CD}\)
=>\(\frac{AB}{AC+AB}=\frac{BD}{CD+BD}\)
=>\(\frac{3}{5+3}=\frac{BD}{BC}\)
=>\(\frac{3}{8}=\frac{BD}{4}\)
=>BD=1,5(cm)
=>CD=BC-BD
CD=4-1,5
CD=2,5(cm)
A B C D E 6 H
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).
A B C 9 12 D E
a, Xét tam giác ABC và tam giác EDC ta có :
^C _ chung
\(\frac{BC}{DC}=\frac{AC}{EC}\)
^BAE = ^CED = 90^0
=> tam giác ABC ~ tam giác CED ( g.c.g )
HAB ? ^H ở đâu bạn ?
b, Vì AD là tia phân giác tam giác ABC ta có :
\(\frac{AB}{AC}=\frac{BD}{DC}\Leftrightarrow\frac{9}{12}=\frac{BD}{DC}\)
hay \(\frac{BD}{DC}=\frac{9}{12}\)tự tính BD và CD nhé
c, Vì AB vuông AC ; DE vuông AC => AB // DE. Áp dụng hệ quả Ta lét :
\(\frac{CE}{BC}=\frac{DE}{AB}\)thay dữ liệu bên phần b tính
d, Áp dụng Py ta go với dữ kiện bên trên tìm tí số
a) trong tam giác ADC có AC=CD(gt)
=> tam giác ADC cân ( dhnb)
Mà CM là trung tuyến(M là trung điểm)
=>CM vuông góc với AD
=> GÓC CMD=90 độ
Xét tam giác HAD và tam giác MCD có
góc AHD= góc CMD (=90 độ)
góc ADC: chung
=> tam giác HAD đồng dạng với tam giác MCD
b, tam giác HAD đồng dạng vs tam giác MCD
=>MD/HD=CD/AD
=>MD.AD=HD.CD
=>MD.1/2MD=HD.CD
=>MD^2/2=DH.CD