\(\Delta\)aBC, aB < aC, D nam giua a va C sao cho a\(\widehat...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

hình bạn tự vẽ nhá

a) Xét tam giác BAH và tam giác ABC , có :

A^ = H^ = 90O

B^ : góc chung

=> tam giác HAB ~ tam giác ACB ( g.g)

b) ADĐL pitago vào tam giác vuông ABC , có :

AB2 + AC2 = BC2

=> 122 + 166 = BC2

=> BC2 = 400

=> BC = 20 cm

Vì tam giác ACB ~ tam giác HAB , nên ta có :

\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)

=> \(\dfrac{AH}{16}\)=\(\dfrac{12}{20}\)

=> AH = 9,6 cm

Ta có : AD là phân giác của A^

=> \(\dfrac{AB}{AC}\)= \(\dfrac{BD}{DC}\)

=> \(\dfrac{12}{16}\)=\(\dfrac{BD}{20-BD}\)

=> 16BD = 240 - 12BD

=> 28BD = 240

=> BD = 8,5 cm

5 tháng 3 2019

hình bạn tự vẽ ak nghen!!!

a)

Xét tam giác ABC và HBA có:

\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{BHA}=90^o\\chung\widehat{B}\end{matrix}\right.\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)

9 tháng 5 2018

Bài 1:

C A B E H D

Ta có: \(\widehat{ACB}+\widehat{ABC}=90^o\)

Xét: \(\Delta ABC\text{ và }\widehat{NBA}\)

      \(\widehat{CAB}=\widehat{ANB}=90^o\)

\(\Rightarrow\Delta ABC~\Delta AHB\)

b) \(\frac{AB}{NB}=\frac{AC}{NA}\)

\(\Leftrightarrow\frac{AB}{AC}=\frac{NB}{NA}\left(1\right)\)

Chứng minh tương tự: 

\(\Delta ABC~\Delta AHB\)

\(\frac{AN}{AB}-\frac{HC}{AC}\Rightarrow\frac{AB}{AC}=\frac{AN}{NC}\left(2\right)\)

\(\text{Từ (1) và (2) }\Rightarrow\frac{NB}{NA}=\frac{NA}{NC}\Rightarrow AB^2=BH.BC\left(đ\text{pcm}\right)\)

Xét tam giác vuông.

Áp dụng định lý Pi-ta-go, ta có: 

\(DB^2=AB^2+AD^2=6^2+8^2=100\)

\(\Rightarrow DB=\sqrt{100}=10\left(cm\right)\)

Bài 2: 

1 1 2 2 A B C D

a) Xét \(\Delta OAV\text{ và }\Delta OCD\)

Có: \(\widehat{AOB}=\widehat{COD}\left(đ^2\right)\)

     \(\widehat{A_1}=\widehat{C_1}\left(\text{so le}\right)\)

\(\Rightarrow\Delta OAB~\Delta OCD\)

\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\Rightarrow\frac{DO}{DB}=\frac{CO}{CA}\)

b) Ta có: \(AC^2-BD^2=DC^2-AB^2\)

\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)

\(\Delta\text{ vuông }ABC\left(\text{theo định lý Pi-ta-go}\right)\)

\(AC^2-DC^2=AD^2\left(1\right)\)

\(\Delta\text{ vuông }BDA\text{ có }\left(\text{theo định lý Pi-ta-go}\right)\)

\(BD^2-AB^2=AD^2\)

\(\text{Từ (1) và (2) }\Rightarrowđ\text{pcm}\)

9 tháng 5 2018

cảm ơn bạn nhé

19 tháng 3 2019

A C D E

Xét \(\Delta ABC\) Và \(\Delta DEC\) có :

         \(\widehat{BAC}\)\(=\widehat{E\text{D}C}\) ( cùng = 900 )

            \(\widehat{C}\) là góc chung

  \(\Rightarrow\)\(\Delta ABC\) ~    \(\Delta DEC\) ( g-g )

Áp dụng định lí pi - ta - go vào \(\Delta ABC\)vuông tại A ta được :

  \(BC^2\)=  \(AB^2\)\(+\)\(AC^2\)

  \(BC^2\)=  32  +   52

  \(BC^2\)=  9  +  25

  \(BC^2\)=  34

  \(BC=\sqrt{34}\)

 Xét \(\Delta ABC\) có AD là đường phân giác \(\widehat{BAC}\)

\(\Rightarrow\frac{B\text{D}}{C\text{D}}=\frac{AB}{AC}\)\(\Rightarrow\frac{B\text{D}}{BC-B\text{D}}=\frac{3}{5}\)\(\Rightarrow\frac{B\text{D}}{\sqrt{34}-B\text{D}}=\frac{3}{5}\)

\(\Rightarrow5BD=3\sqrt{34}-3BD\)\(\Rightarrow3\sqrt{34}-3BD-5BD=0\)

\(\Rightarrow3\sqrt{34}-8BD=0\)\(\Rightarrow B\text{D}=\frac{3\sqrt{34}}{8}\)

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0
9 tháng 3 2018

A B C E G n D

ý a dễ rồi bn tự làm.

b) Do GC//AD\(\Rightarrow\frac{GC}{AD}=\frac{GE}{DE}=\frac{CE}{AE}\left(1\right)\)

Do EG//BC \(\Rightarrow\frac{AD}{DB}=\frac{AE}{CE}=\frac{DE}{BC}\left(2\right)\)

Từ (1) và (2) => \(\frac{DA}{DB}=\frac{DE}{GE}=DA.GE=DB.DE\)

c) \(\widehat{GEC}=\widehat{AED}\left(đđ\right)\)

\(\widehat{AED}=\widehat{ACB}\)

\(\Rightarrow\widehat{GEC}=\widehat{ACB}\)

Xét \(\Delta GEC\)và \(\Delta ACB\)

\(\widehat{CCA}=\widehat{CAB}\)

\(\widehat{GEC}=\widehat{ACB}\)

=> đpcm (khúc c mk cũng chưa chắc)

11 tháng 5 2018

a)  Xét  \(\Delta ABC\)và   \(\Delta MDC\)có:

      \(\widehat{C}\) chung

     \(\widehat{CAB}=\widehat{CMD}=90^0\)

suy ra:   \(\Delta ABC~\Delta MDC\)(g.g)

b)  Xét  \(\Delta BMI\)và    \(\Delta BAC\)có:

         \(\widehat{B}\)chung

        \(\widehat{BMI}=\widehat{BAC}=90^0\) 
suy ra:   \(\Delta BMI~\Delta BAC\) (g.g)

\(\Rightarrow\)\(\frac{BI}{BC}=\frac{BM}{BA}\) 

\(\Rightarrow\)\(BI.BA=BC.BM\)

c)    \(\frac{BI}{BC}=\frac{BM}{BA}\) (câu b)   \(\Rightarrow\)\(\frac{BI}{BM}=\frac{BC}{BA}\)

Xét  \(\Delta BIC\)và    \(\Delta BMA\)có:

     \(\widehat{B}\)chung

    \(\frac{BI}{BM}=\frac{BC}{BA}\) (cmt)

suy ra:   \(\Delta BIC~\Delta BMA\) (g.g)

\(\Rightarrow\) \(\widehat{ICB}=\widehat{BAM}\)    (1)

c/m:  \(\Delta CAI~\Delta BKI\) (g.g)   \(\Rightarrow\)\(\frac{IA}{IK}=\frac{IC}{IB}\) \(\Rightarrow\)\(\frac{IA}{IC}=\frac{IK}{IB}\)

Xét  \(\Delta IAK\)và     \(\Delta ICB\)có:

      \(\widehat{AIK}=\widehat{CIB}\) (dd)

      \(\frac{IA}{IC}=\frac{IK}{IB}\) (cmt)

suy ra:   \(\Delta IAK~\Delta ICB\)(g.g)

\(\Rightarrow\)\(\widehat{IAK}=\widehat{ICB}\) (2) 

Từ (1) và (2) suy ra:  \(\widehat{IAK}=\widehat{BAM}\)

hay  AB là phân giác của \(\widehat{MAK}\)

d)  \(AM\)là phân giác \(\widehat{CAB}\) \(\Rightarrow\)\(\widehat{MAB}=45^0\)

mà   \(\widehat{MAB}=\widehat{ICB}\) (câu c)  

\(\Rightarrow\)\(\widehat{ICB}=45^0\)

\(\Delta CKB\)vuông tại K có  \(\widehat{KCB}=45^0\)

\(\Rightarrow\)\(\widehat{CBK}=45^0\)

\(\Delta MBD\) vuông tại M  có   \(\widehat{MBD}=45^0\)

\(\Rightarrow\)\(\widehat{MDB}=45^0\)

hay   \(\Delta MBD\)vuông cân tại M

\(\Rightarrow\)\(MB=MD\)

\(\Delta ABC\) có  AM là phân giác 

\(\Rightarrow\)\(\frac{MB}{AB}=\frac{MC}{AC}\)

ÁP dụng định ly Pytago vào tam giác vuông ABC ta có:

     \(AB^2+AC^2=BC^2\)

\(\Rightarrow\)\(BC=10\)

ÁP dụng tính chất dãy tỉ số = nhau ta có:

    \(\frac{MB}{AB}=\frac{MC}{AC}=\frac{MB+MC}{AB+AC}=\frac{5}{7}\)

suy ra:   \(\frac{MB}{AB}=\frac{5}{7}\)  \(\Rightarrow\)\(MB=\frac{40}{7}\)

mà   \(MB=MD\) (cmt)

\(\Rightarrow\)\(MD=\frac{40}{7}\)

Vậy  \(S_{CBD}=\frac{1}{2}.CB.DM=\frac{1}{2}.10.\frac{40}{7}=\frac{200}{7}\)

\(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.8.6=24\)

\(\Delta ABC\) có  AM  là phân giác

\(\Rightarrow\)\(\frac{S_{CMA}}{S_{BMA}}=\frac{AC}{AB}=\frac{3}{4}\)

\(\Rightarrow\)\(\frac{S_{CMA}}{3}=\frac{S_{BMA}}{4}=\frac{S_{CMA}+S_{BMA}}{3+4}=\frac{24}{7}\)

\(\Rightarrow\)\(S_{CMA}=\frac{72}{7}\)

Vậy   \(S_{AMBD}=S_{CBD}-S_{CMA}=\frac{200}{7}-\frac{72}{7}=\frac{128}{7}\)

11 tháng 5 2018

C A M B K D I

a)  xét \(\Delta ABC\)  và \(\Delta MDC\)  có 

\(\widehat{ACB}=\widehat{MCD}\)  ( góc chung)

\(\widehat{CAB}=\widehat{CMD}=90^0\)  ( giả thiết )

\(\Rightarrow\Delta ABC\infty\Delta MDC\)  \(\left(g.g\right)\)

b) xét  \(\Delta BIM\) và \(\Delta BCA\)  có 

\(\widehat{IBM}=\widehat{CBA}\)  ( góc chung )

\(\widehat{BMI}=\widehat{BAC}=90^0\)

\(\Rightarrow\Delta BIM\infty\Delta BCA\left(g.g\right)\)

\(\Rightarrow\frac{BI}{BM}=\frac{BC}{BA}\)

\(\Rightarrow BI.BA=BM.BC\)

P/S tạm thời 2 câu này trước đi đã