Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có: \(Ry\perp RS\Rightarrow\widehat{SRy}=90^o\\ Rx\perp RT\Rightarrow\widehat{TRx}=90^o\)
Có: \(\widehat{SRx}=\widehat{SRT}+\widehat{TRx}\\ \widehat{TRy}=\widehat{SRT}+\widehat{SRy}\)
Mà \(\widehat{TRx}=\widehat{SRy}\left(=90^o\right)\)
\(\Rightarrow\widehat{SRx}=\widehat{TRy}\)
b) Xét ΔSRM và ΔTRN có:
\(RS=RT\left(gt\right)\\ \widehat{SRx}=\widehat{TRy}\left(cmt\right)\\ RM=RN\left(gt\right)\)
\(\Rightarrow\Delta SRM=\Delta TRN\left(c.g.c\right)\\ \Rightarrow SM=TN\left(\text{2 cạnh tương ứng}\right)\)
a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay BMNC là hthang
b, Vì N là trung điểm AC và ME(tc đối xứng) nên AECM là hbh
a) Ta có: AD=AE
=> Tam giác ADE cân tại A
\(\Rightarrow\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)
Mà \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Tam giác ABC cân tại A)
=> \(\widehat{ADE}=\widehat{ABC}\)
Mà 2 góc này đồng vị
=> DE//BC
b) Xét tam giác ABI và tam giác ACI
AB=AC
AI chung
BI=IC
=> ΔABI=ΔACI
=> \(\widehat{AIB}=\widehat{AIC}=180^0:2=90^0\Rightarrow AI\perp BC\)
=> AI là đường trung trực của BC