K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

A B C D M N E F

GT : ABCD là hình thang ( AB< CD) 

        MA = MD

        MN//AB//DC

KL: CM: N,E,F lần lượt là trung điểm của BC, BD,AC

                                                                                     Giải:

Xét hình thang ABCD có : 

MA=MD        ( gt)

MN//AB//DC ( gt)

=> MN là đường trung bình của hình thang ABCD 

=> NB=NC

=> N là trung điểm của BC

Xét tam giác ABD  có : 

MA=MD    ( gt)

MN//AB (gt) hay ME//AB(vì ME thuộc MN)

=> ME là đường trung bình của tam giác ABD 

=> EB=ED

=> E là trung điểm của BD

Xét tam giác ABC có: 

NB= NC ( cmt)

MN//AB ( gt ) hay FN//AB ( vì FN thuộc MN )

=> NF là đường trung bình của tam giác ABC

=> NB=NC

=> N là trung điểm của BC

16 tháng 2 2022

a) \(AB^2+CD^2=OA^2+OB^2+OC^2+OD^2=\left(OA^2+OD^2\right)+\left(OB^2+OC^2\right)=AD^2+BC^2\)b) -Áp dụng định lí:

Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.

\(OM+ON+OP+OQ=\dfrac{1}{2}AB+\dfrac{1}{2}BC+\dfrac{1}{2}CD+\dfrac{1}{2}DA=\dfrac{1}{2}\left(AB+BC+CD+DA\right)\)

17 tháng 5 2017

Xét tam giác ABD có 

E là trung điểm AD

P là trung điểm BD 

=> EP là đường trung bình của tam giác ABD (1)

Xét tam giác ABC có :

Q là trung điểm AC

F là trung điểm CB

=> QF là đường trung bình của tam giác ABC (2)

Xét tứ giác ABCD có :

Q là trung điểm AC

P là trung điểm BD

=> QP là đường trung bình của tứ giác ABCD (3)

Từ (1) ; (2) ; (3) 

=> Q , F , E , P thẳng hàng 

17 tháng 5 2017

giúp mk luôn b, c đi bạn

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0
8 tháng 7 2019

Bạn kiểm tra lại đề nhé! Tia Ax nằm giữa hai tia AD và AC hay hai tia AB và AC 

Tham khảo đề bài và lời giải tại link:

Câu hỏi của Chử Văn Dũng - Toán lớp 7 - Học toán với OnlineMath

26 tháng 11 2016

làm đc mỗi câu A và câu b

26 tháng 11 2016

Long thế nào cũng đc bạn cứ làm đi