Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Lấy D sao cho M là trung điểm của AD
Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
(AB+AC)=AB+BD>AD
=>AB+AC>2AM
=>(AB+AC)/2>AM
GT : ABCD là hình thang ( AB< CD)
MA = MD
MN//AB//DC
KL: CM: N,E,F lần lượt là trung điểm của BC, BD,AC
Giải:
Xét hình thang ABCD có :
MA=MD ( gt)
MN//AB//DC ( gt)
=> MN là đường trung bình của hình thang ABCD
=> NB=NC
=> N là trung điểm của BC
Xét tam giác ABD có :
MA=MD ( gt)
MN//AB (gt) hay ME//AB(vì ME thuộc MN)
=> ME là đường trung bình của tam giác ABD
=> EB=ED
=> E là trung điểm của BD
Xét tam giác ABC có:
NB= NC ( cmt)
MN//AB ( gt ) hay FN//AB ( vì FN thuộc MN )
=> NF là đường trung bình của tam giác ABC
=> NB=NC
=> N là trung điểm của BC
a:
Xét ΔABC có AB<AC
mà \(\widehat{C};\widehat{B}\) lần lượt là góc đối diện của các cạnh AB,AC
nên \(\widehat{ACB}< \widehat{ABC}\)
Ta có: AD là phân giác của góc BAC
=>\(\widehat{BAD}=\widehat{CAD}\)
Xét ΔADB có \(\widehat{ADC}\) là góc ngoài tại đỉnh D
nên \(\widehat{ADC}=\widehat{DAB}+\widehat{ABD}=\widehat{DAB}+\widehat{ABC}\)
Xét ΔADC có \(\widehat{ADB}\) là góc ngoài tại đỉnh D
nên \(\widehat{ADB}=\widehat{DAC}+\widehat{ACB}\)
Ta có: \(\widehat{ADC}=\widehat{BAD}+\widehat{ABC}\)
\(\widehat{ADB}=\widehat{DAC}+\widehat{ACB}\)
mà \(\widehat{BAD}=\widehat{DAC};\widehat{ABC}>\widehat{ACB}\)
nên \(\widehat{ADC}>\widehat{ADB}\)
b: Xét ΔABE có
AD là đường cao
AD là đường phân giác
Do đó: ΔABE cân tại A
c: Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
mà AB<AC
nên DB<DC
Xét \(\Delta\)AOD ta có: AO + OD > AD (trong 1 tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)
Xét \(\Delta\) OCD ta có: BO + OC > BC ( trong 1 tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)
Cộng vế với vế ta có: AO + OD + BO + OC > AD + BC
(AO + OC) + ( OD + OB > AD + BC
AC+ BD > AD + BC
Chứng Minh tương tự ta có: AC + BD > AB + CD
a) \(AB^2+CD^2=OA^2+OB^2+OC^2+OD^2=\left(OA^2+OD^2\right)+\left(OB^2+OC^2\right)=AD^2+BC^2\)b) -Áp dụng định lí:
Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.
\(OM+ON+OP+OQ=\dfrac{1}{2}AB+\dfrac{1}{2}BC+\dfrac{1}{2}CD+\dfrac{1}{2}DA=\dfrac{1}{2}\left(AB+BC+CD+DA\right)\)