\(\left|\overrightarrow{AB}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 8 2020

Đặt \(\overrightarrow{u}=\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{DC}=3.\overrightarrow{AB}+\overrightarrow{AD}\) (do \(\overrightarrow{DC}=2\overrightarrow{AB}\))

\(\Rightarrow\left|\overrightarrow{u}\right|^2=\left(3\overrightarrow{AB}+\overrightarrow{AD}\right)^2=9AB^2+AD^2+6\overrightarrow{AB}.\overrightarrow{AD}=9AB^2+AD^2=10AB^2\)

\(\Rightarrow\left|\overrightarrow{u}\right|=AB\sqrt{10}=2\sqrt{10}\)

21 tháng 7 2019
https://i.imgur.com/LbHpR0f.jpg
19 tháng 10 2016

2

NV
22 tháng 8 2020

Đặt \(\overrightarrow{u}=\overrightarrow{CD}+2\overrightarrow{CB}=\overrightarrow{CD}+2\left(\overrightarrow{CD}+\overrightarrow{DA}+\overrightarrow{AB}\right)\)

\(=3\overrightarrow{CD}+2\overrightarrow{DA}-\overrightarrow{CD}\) (do \(2\overrightarrow{AB}=\overrightarrow{DC}=-\overrightarrow{CD}\))

\(=2\overrightarrow{CD}+2\overrightarrow{DA}=2\overrightarrow{CA}\)

\(\Rightarrow\left|\overrightarrow{u}\right|=2AC=2\sqrt{AD^2+CD^2}=4\sqrt{5}\)

31 tháng 7 2019

Hỏi đáp Toán

10 tháng 10 2019

\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC=5\)

\(\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{CA}\right|=\left|\overrightarrow{BC}+\overrightarrow{AD}\right|=\left|2\overrightarrow{AD}\right|=2AD=8\)

Kẻ hbh ABFC

Dễ tính được ACD=530

nên ACB=37=CBF

Theo định lý cos ta tính được AF

bạn tự tính nhá mk ko có mt

18 tháng 5 2017

A B C D B' O
\(cos\left(\overrightarrow{AC};\overrightarrow{BA}\right)=cos\left(\overrightarrow{AC};\overrightarrow{AB'}\right)=cos\widehat{CAB'}=cos135^o\)\(=\dfrac{\sqrt{2}}{2}\).
\(sin\left(\overrightarrow{AC};\overrightarrow{BD}\right)=sin90^o=1\) do \(AC\perp BD\).
\(cos\left(\overrightarrow{AB};\overrightarrow{CD}\right)=cos180^o=-1\) do hai véc tơ \(\overrightarrow{AB};\overrightarrow{CD}\) ngược hướng.

 

18 tháng 5 2017

Giải bài 6 trang 40 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 6 trang 40 sgk Hình học 10 | Để học tốt Toán 10

2 tháng 10 2016

Ta có: (vectơ AB + vectơ AD) + vectơ AC

           = vectơ AC + vectơ AC
           = 2 vectơAC

=> | vectơ AB + vectơ AC + vectơ AD| = 2 vectơAC = 2a căn 2

2 tháng 10 2016

chỗ cuối sao lại bằng 2a căn 2 vậy?

Bài 2:

\(\left|\overrightarrow{BC}+\overrightarrow{BA}\right|=\left|\overrightarrow{AC}\right|=AC=a\sqrt{2}\)

\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=CB=a\)

NV
11 tháng 10 2020

\(BC=AD=\sqrt{AC^2-AB^2}=2a\)

a/ \(T=\left|3\overrightarrow{AB}-4\overrightarrow{BC}\right|\Rightarrow T^2=9AB^2+16BC^2-24\overrightarrow{AB}.\overrightarrow{BC}\)

\(=9a^2+64a^2=73a^2\Rightarrow T=a\sqrt{73}\)

b/ \(T^2=4AB^2+9BC^2+12.\overrightarrow{BA}.\overrightarrow{BC}=4AB^2+9BC^2=40a^2\)

\(\Rightarrow T=2a\sqrt{10}\)

c/ \(T=\left|\overrightarrow{AD}+3\overrightarrow{BC}\right|=\left|\overrightarrow{AD}+3\overrightarrow{AD}\right|=\left|4\overrightarrow{AD}\right|=4AD=8a\)

d/ \(T=\left|2\overrightarrow{DC}-3\overrightarrow{DC}\right|=\left|-\overrightarrow{DC}\right|=CD=AB=a\)