K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TA
31 tháng 8 2020
a) Ta có: BD // MN
=> Khoảng cách từ BD đến MN = khoảng cách từ MN đến BD
Và gọi khoảng cách đó là h
\(\Rightarrow\hept{\begin{cases}S_{\Delta BMN}=\frac{1}{2}h\cdot MN\\S_{\Delta DMN}=\frac{1}{2}h\cdot MN\end{cases}}\Rightarrow S_{\Delta BMN}=S_{\Delta DMN}\)
b) \(\frac{S_{\Delta DMA}}{S_{\Delta DAC}}=\frac{MA}{AC}=\frac{1}{2}\Rightarrow S_{\Delta DMA}=\frac{1}{2}S_{\Delta DAC}\)
\(\frac{S_{\Delta ABM}}{S_{\Delta ABC}}=\frac{MA}{AC}=\frac{1}{2}\Rightarrow S_{\Delta ABM}=\frac{1}{2}S_{\Delta ABC}\)
\(\Rightarrow S_{\Delta DMA}+S_{\Delta ABM}=\frac{1}{2}\cdot\left(S_{\Delta DAC}+S_{\Delta ABC}\right)\)
\(\Rightarrow S_{ABMD}=\frac{1}{2}\cdot16=8\left(cm^2\right)\)
a) Ta có: S hình thang ABCD là : \(\frac{\left(AB+CD\right)\cdot h}{2}=450\Rightarrow3CD\cdot h=900\Rightarrow h=\frac{900}{3CD}=\frac{300}{CD}\)
Mà hình thang ABCD và tam giác ABC có cùng đường cao hạ từ C
Nên diện tích tam giác ABC là: \(\frac{AB\cdot h}{2}=\frac{2CD\cdot h}{2}=\frac{2CD\cdot\frac{300}{CD}}{2}=300\left(cm^2\right)\)
b) hình tứ giác có diện tích nhỏ nhất là hình thang CMAN (vì CM=CD/2 và AN=AB/2)
Diện tích tứ giác đó là: \(\frac{\left(CM+AN\right)\cdot h}{2}=\frac{1,5CD\cdot\frac{300}{CD}}{2}=225\left(cm^2\right)\)
c)IM<IN (sr nha mình bận một chút)
có gì k cho mình nha