Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
???ng th?ng m: ???ng th?ng qua B, A ???ng th?ng n: ???ng th?ng qua C, D ???ng th?ng p: ???ng th?ng qua O song song v?i f ?o?n th?ng f: ?o?n th?ng [A, D] ?o?n th?ng h: ?o?n th?ng [B, A] ?o?n th?ng i: ?o?n th?ng [B, C] ?o?n th?ng j: ?o?n th?ng [C, D] ?o?n th?ng k: ?o?n th?ng [B, D] ?o?n th?ng l: ?o?n th?ng [C, A] ?o?n th?ng q: ?o?n th?ng [P, H] ?o?n th?ng r: ?o?n th?ng [K, H] A = (-2.78, -0.04) A = (-2.78, -0.04) A = (-2.78, -0.04) D = (2.72, -0.06) D = (2.72, -0.06) D = (2.72, -0.06) B = (-2.02, 3.14) B = (-2.02, 3.14) B = (-2.02, 3.14) ?i?m C: ?i?m tr�n g ?i?m C: ?i?m tr�n g ?i?m C: ?i?m tr�n g ?i?m O: Giao ?i?m c?a k, l ?i?m O: Giao ?i?m c?a k, l ?i?m O: Giao ?i?m c?a k, l ?i?m K: Giao ?i?m c?a m, n ?i?m K: Giao ?i?m c?a m, n ?i?m K: Giao ?i?m c?a m, n ?i?m H: Trung ?i?m c?a A, D ?i?m H: Trung ?i?m c?a A, D ?i?m H: Trung ?i?m c?a A, D ?i?m I: Trung ?i?m c?a B, C ?i?m I: Trung ?i?m c?a B, C ?i?m I: Trung ?i?m c?a B, C ?i?m P: Trung ?i?m c?a B, A ?i?m P: Trung ?i?m c?a B, A ?i?m P: Trung ?i?m c?a B, A ?i?m Q: Trung ?i?m c?a C, D ?i?m Q: Trung ?i?m c?a C, D ?i?m Q: Trung ?i?m c?a C, D ?i?m M: Giao ?i?m c?a m, p ?i?m M: Giao ?i?m c?a m, p ?i?m M: Giao ?i?m c?a m, p ?i?m N: Giao ?i?m c?a n, p ?i?m N: Giao ?i?m c?a n, p ?i?m N: Giao ?i?m c?a n, p
Cô hướng dẫn nhé :)
a. Ta thấy P, H lần lượt là trung điểm AB, AD nên PH là đường trung bình tam giác ABD, từ đó suy ra PH//DB.
Tương tự như vậy IQ cũng song song BD, lại có IQ = HP = BD/2 nên HPIQ là hình bình hành.
b. Ta có MN song song hai cạnh đáy, áo dụng định lý Ta let ta có:
\(\frac{MO}{BC}=\frac{AM}{AB}=\frac{DN}{DC}=\frac{ON}{BC}\). Vậy OM = ON.
Ta chứng minh giao điểm của KO với AB, AD sẽ là trung điểm. GIả sử hai giao điểm đó là I, H. Cũng dùng Ta let ta có: \(\frac{BI}{OM}=\frac{KI}{KO}=\frac{IC}{ON}\). Vậy IB = IC. Tương tự HA = HD.
c. \(\frac{BC}{AD}=\frac{OI}{OH}\)
d. \(\frac{S\Delta KBC}{S\Delta KAH}=\left(\frac{BC}{AD}\right)^2=\frac{1}{16}\Rightarrow\frac{SABCD}{S\Delta KAD}=\frac{15}{16}\Rightarrow S\Delta KAD=25,6\Rightarrow S\Delta KAH=\frac{25,6}{2}=12,8\)
Bài 2 :
A B C D M E
a, Xét tam giác ABC ta có :
D là trung điểm AB
M là trung điểm CB
=)) DM là đường TB tam giác ABC
=)) DM // AC hay DM // AE (1)
Ta có : E là trung điểm AC
M là trung điểm BA
=)) EM là đường TB tam giác ABC
=)) EM // AB hay EM // AD (2)
Từ 1;2 =)) Tứ giác ADME là hình bình hành
b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM
=)) AM đồng thời là tia phân giác của ^A
Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)
=)) Tứ giác ADME là hình thoi
c, Nếu tam giác ABC vuông tại A => ^A = 90^0
Xét hình bình hành ADME có ^A =90^0
=)) Tứ giác ADME là hình chữ nhật
2/
a/ hình thang ABCD có
AB // EF
==> AB // KF
xét tam giác ABC có
F là trung điểm của BC
AB // KF
==> KF là đường trung bình của tam giác ABC
==> K là trung điểm của AC
==> AK = KC
b/
E là trung điểm AD
F là trung điểm BC
==> EF là đường trung bình của hình thang ABCD
==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)
KF là đường trung bình của tam giác ABC nên
KF = AB / 2 = 4 / 2 = 2(cm)
==> EK = EF - KF = 7 - 2 = 5(cm)
vậy EK = 5(cm), KF = 2 (cm)
3/
a/ ta có
D là trung điểm của AB
M là trung điểm của BC
==> DM là đường trung bình của tam giác ABC
==> Dm // AC
==> DM // AE ( E thuộc AC, DM // AC)
chứng minh tương tự ta có
ME là đường trung bình của tam giác ABC
==> AD // ME
tứ giác ADME có DM // AE, AD // ME nên là HBH
b/ ( nếu tam giác ABC cân tại A)
tam giác ABC cân tại A ==> AB = AC
AD = 1/2 AB (D là trung điểm của AB)
AE = 1/2 AC (E là trung điểm của AC)
==> AD = AE
c/ (nếu tam giác ABC vuông)
ta có
tứ giác ADME là HBH
góc A = 90 độ
==> tứ giác ADME là HCN
d/ ta có
AB^2 + AC^2 = BC^2
6^2 + 8^2 = 100
==> BC = 10(cm)
AM là đường trung tuyến của tam giác ABC
==> AM = 1/2 BC = 1/2 . 10 = 5(cm)
vậy AM = 5cm
Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé
Bài 3:
Bài 4:
Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)
Bài 5: