Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình trụ nội tiếp trong lăng trụ tam giác đều có đường tròn đáy tiếp xúc tại trung điểm các cạnh của tam giác đáy. Gọi I là trung điểm của cạnh BC, r là bán kính đáy của hình trụ nội tiếp trong lăng trụ
Ta có:
Do đó:
Ta có diện tích xung quanh của hình trụ nội tiếp lăng trụ là:
Ta có : \(\dfrac{KM}{AA'}=\dfrac{IK}{IA}=\dfrac{2}{3}\Rightarrow KM=\dfrac{2}{3}h\)
Xét tam giác vuông IKM ta có : \(IM^2=IK^2+KM^2=\dfrac{3a^2}{9}+\dfrac{4h^2}{9}=\dfrac{3a^2+4h^2}{9}\)
Vậy :
\(IM=\dfrac{\sqrt{3a^2+4h^2}}{3}\)
Đáp án B
Ta có mặt bên là hình chữ nhật có diện tích bằng 3 a 2
⇒ chiều cao của lăng trụ là 3 a 2 a = 3 a .
Có diện tích đáy hình trụ bằng S = πa 2
Vậy V = 3 a . πa 2 = 3 πa 2 .
Đáp án C
Phương pháp:
Diện tích xung quanh của hình hộp chữ nhật: Sxq = 2(a + b)h (trong đó, a, b là chiều dài, chiều rộng của đáy, h là chiều cao)
Diện tích xung quanh của lăng trụ tứ giác đều: Sxq = 4ah trong đó, a là độ dài cạnh đáy, h là chiều cao) .
Cách giải:
Diện tích xung quanh của hình lăng trụ đã cho bằng: 4.a.2a = 8a2
Chọn A
Xét hình lăng trụ đều (H) đã cho có đáy là đa giác đều n đỉnh. Xét điểm trong I của hình lăng trụ đều (H) đã cho. Khi đó nối I với các đỉnh của (H) ta được n+2 khối chóp có đỉnh là I, trong đó có hai khối chóp có đỉnh là I và mặt đáy là mặt đáy của (H); và n khối chóp có đỉnh I và mặt đáy là mặt bên của (H). Diện tích mỗi mặt
đáy của (H) bằng S; diện tích mỗi mặt bên của (H) bằng ah. Gọi h1, h2, .., hn, hn+1, hn2 lần lượt là khoảng cách từ I đến các mặt bên của (H) và các mặt đáy của (H). Vậy theo công thức tính thể tích của khối lăng trụ và khối chóp ta có:
Chú ý tổng khoảng cách từ I đến hai mặt đáy của (H) là
Đáp án D
Ta có góc giữa cạnh bên AA' với mặt đáy (ABC) là:
góc A ' A H ^ và tan A ' A H = A ' H A H
Suy ra A ' H = a 2 . tan 30 ° = a 3 6
Do đó V = A ' H . S A B C = a 3 6 . a 2 3 4 = a 3 8
Đáp án D
Diện tích mỗi mặt bên là a2. Diện tích xung quanh của lăng trụ tam giác là S=3a2.