K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a)

Ta có: (ADD’A’) // (CBC’B’);

           (ADD’A’) ∩ (DCB’A’) = A’D;

           (CBC’B’) ∩ (DCB’A’) = B’C.

Do đó A’D // B’C, mà B’C ⊂ (B’CM) nên A’D // (B’CM).

Tương tự: (ABB’A’) // (DCC’D’);

                 (ABB’A’) ∩ (DMB’N) = MB’;

                 (DCC’D’) ∩ (DMB’N) = DN.

Do đó MB’ // DN, mà MB’ ⊂ (B’CM) nên DN // (B’CM).

Ta có: A’D // (B’CM);

           DN // (B’CM);

           A’D, DN cắt nhau tại điểm D và cùng nằm trong mp(A’DN)

Do đó (A’DN) // (B’CM).

b)

 Trong mp(A’B’C’D’), gọi J là giao điểm của A’N và B’D’.

Trong mp(BDD’B’), D’B cắt DJ tại E.

Ta có: D’B ∩ DJ = {E} mà DJ ⊂ (A’DN) nên E là giao điểm của D’B và (A’DN).

Tương tự, trong mp(ABCD), gọi I là giao điểm của CM và BD.

Trong mp(BDD’B’), D’B cắt B’I tại F.

Ta có: D’B ∩ B’I = {F} mà B’I ⊂ (B’CM) nên F là giao điểm của D’B và (B’CM).

• Ta có: (A’DN) // (B’CM);

              (A’DN) ∩ (BDD’B’) = DJ;

              (B’CM) ∩ (BDD’B’) = B’I.

Do đó DJ // B’I.

Trong mp(BDD’B’), xét DBDE có IF // DE nên theo định lí Thalès ta có: \(\frac{{BI}}{{BD}} = \frac{{BF}}{{BE}}\) (1)

Trong mp(ABCD), gọi O là giao điểm của hai đường chéo AC và BD trong hình bình hành ABCD. Khi đó O là trung điểm của AC, BD.

Xét ∆ABC, hai đường trung tuyến BO, CM cắt nhau tại I nên I là trọng tâm của tam giác

Suy ra \(\frac{{BI}}{{BO}} = \frac{2}{3}\)  hay \(\frac{{BI}}{{\frac{1}{2}BD}} = \frac{{2BI}}{{BD}} = \frac{2}{3}\)

Do đó \(\frac{{BI}}{{BD}} = \frac{1}{3}\) (2)

Từ (1) và (2) suy ra \(\frac{{BF}}{{BE}} = \frac{1}{3}\)

Suy ra \(\frac{{D'E}}{{D'F - D'E}} = \frac{1}{{3 - 1}}\) hay \(\frac{{D'E}}{{EF}} = \frac{1}{2}\).

Chứng minh tương tự ta cũng có \(\frac{{D'E}}{{D'F}} = \frac{{D'J}}{{D'B'}} = \frac{1}{3}\)

Suy ra \(\frac{{D'E}}{{D'F - D'E}} = \frac{1}{{3 - 1}}\)  hay \(\frac{{D'E}}{{EF}} = \frac{1}{2}\)

Do đó \(\frac{{BF}}{{EF}} = \frac{{D'E}}{{EF}} = \frac{1}{2}\) nên BF = D’E = ½ EF.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) Gọi H là trung điểm của BC

△ABC có: E là trung điểm của AC, H là trung điểm của BC

Suy ra: EH // AB

Mà AB // A'B'

Do đó: EH // A'B' hay EH // B'F (1)

Ta có: EH // AB nên \(\dfrac{EH}{AB}=\dfrac{EC}{AC}=\dfrac{1}{2}\)

Mà AB = A'B', B'F = \(\dfrac{1}{2}\) A'B'

Nên: EH = B'F (2)

(1)(2) suy ra: EHB'F là hình bình hành. Do đó: EF // B'H

Mà B'H thuộc (BCC'B')

Suy ra: EF // (BCC'B')

b) Gọi K là trung điểm AB

Dễ dàng chứng minh được FKBB' là hình bình hành

Ta có: FK // BB' 

Mà BB' // CC' 

Suy ra: FK // CC' (1)

Ta có: FK = BB', mà BB' = CC' 

Do đó: FK = CC' (2) 

(1)(2) suy ra FKCC' là hình bình hành 

Mà hai đường chéo của hình bình hành cắt nhau tại trung điểm mỗi đường

Nên C'K cắt CF tại trung điểm của hai đường thẳng

mà C'K thuộc (AC'B) , CF cắt (AC'B) tại I (đề bài)

Do đó: I là trung điểm của CF. 

10 tháng 12 2020

Cho tứ diện ABCD . Gọi G1,G2,G3 lần lượt là trọng tâm của các tam giác ABC,ACD,ABD . Chứng minh mặt phẳng (G1G2G3) // (BCD) 

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a) Ta có: N là trung điểm của AA’ nên \(\frac{{AN}}{{AA'}} = \frac{1}{2}\)

Q là trung điểm của AD’ nên \(\frac{{AQ}}{{AD'}} = \frac{1}{2}\)

Theo định lý Ta – let, ta có NQ // A’D’

Suy ra \(\frac{{NQ}}{{A'D'}} = \frac{{AN}}{{AA'}} = \frac{1}{2}\) nên\(NQ = \frac{1}{2}A'D'\)

b) Ta có: NQ // A’D’ mà A’D’ // BC nên NQ // BC hay NQ // MC (1)

Ta có \(NQ = \frac{1}{2}A'D'\) mà A’D’ = BC, \(MC = \frac{1}{2}BC\), nên NQ = MC (2)

Từ (1) và (2) suy ra MNQC là hình bình hành

c) Ta có: MNQC là hình bình hành nên MN // CQ

Mà CQ thuộc (ACD’)

Nên MN // (ACD’)

d) Gọi O là trung điểm của AC

Tam giác ACB có: O, M là trung điểm của AC, BC

Suy ra: OM // AB nên \(OM = \frac{1}{2}AB\)

Mà AB = C’D’, \(D'P = \frac{1}{2}C'D\),

Suy ra OM = D’P (1)

Ta có: OM // AB, AB // C’D’ nên OM // C’D‘ hay OM // D’P (2)

Từ (1) và (2) suy ra OMPD’ là hình bình hành. Do đó: MP // OD’

Mà OD’ thuộc (ACD’)

Suy ra: MP // (ACD’)

Mà MN thuộc (ACD’)

Do đó: (MNP) // (ACD’)

31 tháng 3 2017

a) E, F ∈ (ABC) => EF ⊂ (ABC)

b) I ∈ EF => I ∈ ( DEF)

31 tháng 3 2017

a) E, F ∈ (ABC) => EF ⊂ (ABC)

b) I ∈ EF => I ∈ ( DEF)

Cho hình thang ABCD có AB // CD và AB = 2a, BC = CD = DA = a. Đường thẳng d vuông góc với mặt phẳng (ABCD) tại A. Gọi S là một điểm duy nhất thay đổi trên d. (P) là một mặt phẳng qua A vuông góc với SB tại I và cắt SC, SD lần lượt tại J, K.a) Chứng minh tứ giác BCJI, AIJK là các tứ giác nội tiếp.b) Gọi O là trung điểm của AB, O' là tâm đường tròn ngoại tiếp tứ giác BCJI. Chứng minh rằng OO' ⊥...
Đọc tiếp

Cho hình thang ABCD có AB // CD và AB = 2a, BC = CD = DA = a. Đường thẳng d vuông góc với mặt phẳng (ABCD) tại A. Gọi S là một điểm duy nhất thay đổi trên d. (P) là một mặt phẳng qua A vuông góc với SB tại I và cắt SC, SD lần lượt tại J, K.

a) Chứng minh tứ giác BCJI, AIJK là các tứ giác nội tiếp.

b) Gọi O là trung điểm của AB, O' là tâm đường tròn ngoại tiếp tứ giác BCJI. Chứng minh rằng OO' ⊥ (SBC).

c) Chứng minh rằng khi S thay đổi trên d thì JK luôn luôn đi qua một điểm cố định.

d) Tìm một điểm cách đều các điểm A, B, C, D, I, J, K và tìm khoảng cách đó.

e) Gọi M là giao điểm của JK và (ABCD). Chứng minh rằng AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC.

f) Khi S thay đổi trên d, các điểm I, J, K lần lượt chạy trên đường nào.

1
27 tháng 3 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nhận xét

Hình thang ABCD có hai cạnh bên và đáy nhỏ bằng nhau và bằng nửa đáy lớn, nên nó là nửa lục giác đều nội tiếp trong đường tròn đường kính AB, tâm O là trung điểm của AB.

Như vậy: ∠(ACB) = ∠(ADB) = 1v.

a) Theo giả thiết, ta có: SA ⊥ (ABCD) ⇒ SA ⊥ BC

BC ⊥ SA & BC ⊥ AC ⇒ BC ⊥ (SAC) ⇒ BC ⊥ SC. (1)

Mặt khác SB ⊥ (P) nên SB ⊥ IJ (⊂ (P)) (2)

Từ (1) và (2) suy ra BCJI là tứ giác nội tiếp trong đường tròn đường kính BJ.

Ta có BC ⊥ (SAC) ⇒ BC ⊥ AJ (⊂ (SAC))

AJ ⊥ BC & AJ ⊥ SB (do SB ⊥ (P)) ⇒ AJ ⊥ (SBC) ⇒ AJ ⊥ JI (⊂ (SBC)) (3)

Lý luận tương tự, ta có:

BD ⊥ AD & BD ⊥ SA ⇒ BD ⊥ (SAD) ⇒ BD ⊥ AK (⊂ (SAD))

AK ⊥ BD & AK ⊥ SB(⊂ (P)) ⇒ AK ⊥ (SBD) ⇒ AK ⊥ KI. (4)

Từ (3) và (4) suy ra AKJI nội tiếp trong đường tròn đường kính AI nằm trong mặt phẳng (P).

b) Ta có ngay O’ là trung điểm BJ

Vì OO’ là đường trung bình của ΔABJ nên OO’ // AJ

Mà AJ ⊥ (SBC) nên OO’ ⊥ (SBC)

c) Ta có (SCD) ∩ (ABCD) = CD.

Gọi M = JK ∩ CD

SA ⊥ (ABCD) ⇒ SA ⊥ AM(⊂ (ABCD)) (5)

SB ⊥ (P) ⇒ SB ⊥ AM (⊂ (P)) (6)

Từ (5) và (6), ta có: AM ⊥ (SAB) ⇒ AM ⊥ AB.

Suy ra AM là tiếp tuyến của đường tròn ngoại tiếp ΔABC tại A. Như vậy AM cố định. Vì M = AM ∩ CD nên M cố định.

d) ΔAIB vuông tại I nên OA = OB = OI

ΔAJB vuông tại J (do AJ ⊥ (SBC)) nên OA = OB = OJ).

ΔAKB vuông tại K (do AK ⊥ (SBD)) nên OA = OB = OK).

Ta có OA = OB = OC = OD = OI = OJ = OK nên O là điểm cách đều các điểm đã cho và OA = AB/2 = a.

e) Theo chứng minh câu c.

f) Khi S thay đổi trên d, ta có I luôn nằm trong mặt phẳng (B, d).

Trong mặt phẳng này I luôn nhìn đoạn AB cố định dưới góc vuông nên tập hợp I là đường tròn ( C 1 ) đường kính AB nằm trong mặt phẳng (B, d).

Tương tự, tập hợp J là đường tròn ( C 2 ) đường kính AC nằm trong mặt phẳng (C, d) và tập hợp K là đường tròn đường kính AD nằm trong mặt phẳng (D, d).

22 tháng 12 2018

11 tháng 12 2023

loading...  loading...  loading...  loading...  

11 tháng 12 2023

Tối nay anh giúp em 20 câu toán với nha anh em đang cần gấp ạ thanks anh rất nhiều luôn ạ