K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2023

Tham khảo:

a) Ta có các điểm D, E đều nằm trong mp(SAB) nên đường thẳng DE nằm trong mp (SAB).

b) F thuộc AB suy ra F nằm trong mp (SAB).

F thuộc DE suy ra F nằm trong mp(CDE).

Do đó, F là điểm chung của hai mặt phẳng (SAB) và (CDE).

SA vuông góc (P)

SA vuông góc (ABC)

=>(P)//(ABC)

=>B'C'//BC

21 tháng 10 2023

1:

a: \(D\in SA\subset\left(SAB\right);E\in SB\subset\left(SAB\right)\)

Do đó: \(DE\subset\left(SAB\right)\)

b: \(F\in AB\subset\left(SAB\right)\)

\(F\in DE\subset\left(CDE\right)\)

Do đó: \(F\in\left(SAB\right)\cap\left(CDE\right)\)

2:

\(N\in AB\subset\left(ABM\right);N\in CD\subset\left(SCD\right)\)

Do đó: \(N\in\left(ABM\right)\cap\left(SCD\right)\)

\(M\in SC\subset\left(SCD\right);M\in MB\subset\left(ABM\right)\)

Do đó: \(M\in\left(ABM\right)\cap\left(SCD\right)\)

Do đó: \(\left(ABM\right)\cap\left(SCD\right)=MN\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Ta có: \(\left( {MM'M''} \right)\parallel \left( {NN'N''} \right)\parallel \left( {ABC} \right)\) nên theo định lí Thalès ta có:

\(\frac{{SM}}{{SA}} = \frac{{SM'}}{{SB}} \Leftrightarrow SM' = \frac{{SM.SB}}{{SA}} = \frac{{4.12}}{9} = \frac{{16}}{3}\)

\(\frac{{SA}}{{SB}} = \frac{{MN}}{{M'N'}} \Leftrightarrow M'N' = \frac{{MN.SB}}{{SA}} = \frac{{3.12}}{9} = 4\)

\(\frac{{SA}}{{SC}} = \frac{{MN}}{{M''N''}} \Leftrightarrow M''N'' = \frac{{MN.SC}}{{SA}} = \frac{{3.15}}{9} = 5\)

\(\frac{{SA}}{{SC}} = \frac{{NA}}{{N''C}} \Leftrightarrow N''C = \frac{{NA.SC}}{{SA}} = \frac{{2.15}}{9} = \frac{{10}}{3}\)

 

24 tháng 10 2023

 a) Gọi \(O=AC\cap BD\). Khi đó \(O\in\left(SAC\right)\cap\left(SBD\right)\). Lại có \(S\in\left(SAC\right)\cap\left(SBD\right)\) nên SO chính là giao tuyến của (SAC) và (SBD).

 b) Trong mp (AMNK) cho \(AN\cap MK=L\). Do \(AN\subset\left(SAC\right),MK\subset\left(SBD\right)\) nên \(L\in\left(SAC\right)\cap\left(SBD\right)\) nên \(L\in SO\)\(\Rightarrow\) L là trọng tâm tam giác SAC \(\Rightarrow\dfrac{SL}{LO}=2\). Mà \(\dfrac{SM}{MB}=2\) nên \(\dfrac{SL}{LO}=\dfrac{SM}{MB}\Rightarrow\) LM//BO hay MK//BD, suy ra đpcm.

16 tháng 12 2018

a) E ∈ AB mà AB ⊂ (ABC)

⇒ E ∈ (ABC)

F ∈ AC mà AC ⊂ (ABC)

⇒ F ∈ (ABC)

Đường thẳng EF có hai điểm E, F cùng thuộc mp(ABC) nên theo tính chất 3 thì EF ⊂ (ABC).

b) I ∈ BC mà BC ⊂ (BCD) nên I ∈ (BCD) (1)

I ∈ EF mà EF ⊂ (DEF) nên I ∈ (DEF) (2)

Từ (1) và (2) suy ra I là điểm chung của hai mặt phẳng (BCD) và (DEF).

7 tháng 12 2018

a) Chứng minh  B 1 ,   C 1 ,   D 1  lần lượt là trung điểm của các cạnh SB, SC, SD

Ta có:

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ A 1 B 1  là đường trung bình của tam giác SAB.

⇒   B 1  là trung điểm của SB (đpcm)

*Chứng minh tương tự ta cũng được:

• C 1  là trung điểm của SC.

• D 1  là trung điểm của SD.

b) Chứng minh  B 1 B 2   =   B 2 B ,   C 1 C 2   =   C 2 C ,   D 1 D 2   =   D 2 D .

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ A 2 B 2  là đường trung bình của hình thang A 1 B 1 B A

⇒   B 2  là trung điểm của B 1 B

⇒   B 1 B 2   =   B 2 B (đpcm)

*Chứng minh tương tự ta cũng được:

• C 2  là trung điểm của C 1 C 2   ⇒   C 1 C 2   =   C 2 C

• D 2  là trung điểm của D 1 D 2   ⇒   D 1 D 2   =   D 2 D .

c) Các hình chóp cụt có một đáy là tứ giác ABCD, đó là : A 1 B 1 C 1 D 1 . A B C D   v à   A 2 B 2 C 2 D 2 . A B C D

7 tháng 7 2017

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

loading...

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Xét tam giác SAD có: \(\dfrac{MA}{MS}=\dfrac{QD}{QS}\) suy ra MQ // AD do đó MQ // (ABCD)

Tương tự ta có: QP // (ABCD)

Vậy mp(MPQ) // mp(ABCD).

Lập luận tương tự, ta có mp(NPQ) // (ABCD).

Hai mặt phẳng (MPQ) và (NPQ) cùng đi qua điểm P và cùng song song với mặt phẳng (ABCD) nên hai mặt phẳng đó trùng nhau, tức bốn điểm M, N, P, Q đồng phẳng.