K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có: I ∈ (SAD) ⇒ I ∈ (SAD) ∩ (IBC)

Vậy

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Và PQ //AD // BC (1)

Tương tự: J ∈ (SBC) ⇒ J ∈ (SBC) ∩ (JAD)

Vậy

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (1) và (2) suy ra PQ // MN.

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó: EF = (AMND) ∩ (PBCQ)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tính

EF: CP ∩ EF = K ⇒ EF = EK + KF

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (∗) suy ra

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tương tự ta tính được KF = 2a/5

Vậy: Giải sách bài tập Toán 11 | Giải sbt Toán 11

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

1 tháng 1 2018

11 tháng 12 2023

a: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

b: Xét ΔSAB có

M,N lần lượt là trung điểm của AS,AB

=>MN là đường trung bình của ΔSAB

=>MN//SB

Ta có: MN//SB

SB\(\subset\)(SBC)

MN ko nằm trong mp(SBC)

Do đó: MN//(SBC)

NV
4 tháng 1 2022

Áp dụng định lý Talet trong tam giác KAD:

\(\dfrac{KB}{KA}=\dfrac{KC}{KD}=\dfrac{BC}{AD}=\dfrac{1}{2}\)

\(\Rightarrow B,C\) lần lượt là trung điểm AK và DK

Mà E, F là trung điểm SA, SD

\(\Rightarrow\) M, N lần lượt là trọng tâm các tam giác SAK và SDK

\(\Rightarrow\dfrac{SM}{SB}=\dfrac{2}{3}\) ; \(\dfrac{SN}{SC}=\dfrac{2}{3}\)

\(\Rightarrow\dfrac{MN}{BC}=\dfrac{SM}{SB}=\dfrac{SN}{SC}=\dfrac{2}{3}\) (Talet)

\(\Rightarrow MN=\dfrac{2}{3}BC=\dfrac{2}{3}.\dfrac{1}{2}AD=\dfrac{1}{3}AD\)

Lại có EF là đường trung bình tam giác SAD \(\Rightarrow EF=\dfrac{1}{2}AD\)

\(\Rightarrow\dfrac{S_{KMN}}{S_{KEF}}=\dfrac{MN}{EF}=\dfrac{\dfrac{1}{3}AD}{\dfrac{1}{2}AD}=\dfrac{2}{3}\)

NV
4 tháng 1 2022

undefined

NV
27 tháng 12 2020

Trong tam giác SBD, MN là đường trung bình \(\Rightarrow MN||BD\)

\(\Rightarrow MN||\left(ABCD\right)\)

Trong mp (ABCD), qua E kẻ đường thẳng song song BD cắt BC tại F và cắt AD kéo dài tại G

Trong mp (SAD), nối GN kéo dài cắt SA tại P

Ngũ giác PNEFM là thiết diện của (MNE) và chóp

12 tháng 2 2017

+ Ta có: M N // B C ⇒ M N // S B C E M // S B ⇒ E M // S B C ⇒ M N E // S B C

⇒ d((MNE); (SBC)) = d(M; (SBC))

+ Lại có: AM ∩ (SBC) = B ⇒ d A ; S B C d M ; S B C = A B M B = 2 ⇒ d(M; (SBC)) = 1/2 d(A;(SBC))

⇒ d ((MNE);(SBC)) = 1/2 d(A;(SBC))

+ Từ A hạ AF ⊥  BC tại F, AG  ⊥  SF tại G

B C ⊥ S A B C ⊥ A F ⇒ B C ⊥ S A F ⇒ B C ⊥ A G  mà AG  SF nên AG (SBC)

⇒  d(A;(SBC)) = AG

+ Tính AG

Do ABCD là hình thang cân, BC = 2a nên suy ra BF = a/2

⇒ AF = BF. tan 60 ° =  a 3 2

Tam giác SAF vuông tại A có AG là đường cao

⇒ 1 A G 2 = 1 S A 2 + 1 A F 2   ⇒ AG = a 66 11

⇒ d ((MNE);(SBC)) = 1/2 d(A;(SBC)) = 1/2 AG = a 66 22 .

Đáp án C