K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

nguyenlinh0123

7 tháng 4 2018

Xét  \(\Delta BEC\) và     \(\Delta CAF\) có:

\(\widehat{CBE}=\widehat{FCA}=90^0\)

\(\widehat{BEC}=\widehat{CAF}\)  (cùng phụ với góc CAE)

suy ra:   \(\Delta BEC~\Delta CAF\)  (g.g)

\(\Rightarrow\)\(\frac{BE}{AC}=\frac{BC}{CF}\)

\(\Rightarrow\)\(BE.CF=AC.BC\)

9 tháng 3 2023

xét ΔABC  và ΔADC có

\(\widehat{ADC}\)=\(\widehat{ABC}\)=90\(^o\)

\(\dfrac{AB}{DC}\)=\(\dfrac{BC}{AD}\)=1

=>ΔABC∼ΔADC(c.g.c)

 

 

9 tháng 3 2023

xét ΔADF và ΔAFE có

\(\widehat{ADF}\) Chung

\(\widehat{AED}\)=\(\widehat{AEF}\)=90\(^o\)

->ΔADF ∼ ΔAFE(2)

xét ΔAEF và ΔABC có

\(\widehat{CAB}\) chung

\(\widehat{ABC}\)=\(\widehat{AFE}\)=90\(^o\)

->ΔAEF ∼ ΔABC (3)

từ (1) ,(2) và (3)=>ΔADF ∼ ΔDCA 

a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có

góc E chung

=>ΔBDE đồng dạng với ΔDCE

b: BD=căn 8^2+6^2=10cm

BE=10^2/6=100/6=50/3cm

EC=DC^2/BC=8^2/6=32/3cm

Xét ΔEBD có CH//BD

nên CH/BD=EC/EB

=>CH/10=32/50=16/25

=>CH=160/25=6,4cm

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: AB/HB=BC/BA

=>BH/AB=BC/BA(1)

hay \(AB^2=BH\cdot BC\)

Câu b đề sai rồi bạn

26 tháng 2 2022

Cảm ơn bạn nhiều. Giải mình câu C nhé. Cảm ơn bạn

 

16 tháng 3 2020

A B C D H I M N O

a, xét tứ giác ADMN có : ^NAD = ^ADM = ^ANM = 90

=> ADMN là hình chữ nhật

b, có M là trung điểm của DC (gt)

I là trung điểm của CH (gt)

=> MI là đường trung bình của tam giác DHC (đn)

=> MI // DH (tc)

DH _|_ AC (gt)

=> MI _|_ AC

c, gọi AM cắt DM tại O 

ANMD là hình chữ nhật (câu a)

=> AM = DN (tc)             (1) và O là trung điểm của AM (tc)

xét tam giác AIM vuông tại I

=> IO = AM/2 và (1)

=> IO = DN/2

=> tam giác DNI vuông tại I (đl)