Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét ΔABC và ΔADC có
\(\widehat{ADC}\)=\(\widehat{ABC}\)=90\(^o\)
\(\dfrac{AB}{DC}\)=\(\dfrac{BC}{AD}\)=1
=>ΔABC∼ΔADC(c.g.c)
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: BD=căn 8^2+6^2=10cm
BE=10^2/6=100/6=50/3cm
EC=DC^2/BC=8^2/6=32/3cm
Xét ΔEBD có CH//BD
nên CH/BD=EC/EB
=>CH/10=32/50=16/25
=>CH=160/25=6,4cm
a: Xét ΔAFE vuông tại A và ΔDFC vuông tại D có
góc AFE=góc DFC
=>ΔAFE đồng dạng với ΔDCF
b: Xét ΔAEF vuông tại A và ΔACB vuông tại A có
góc AEF=góc ACB
=>ΔAEF đồng dạng với ΔACB
=>EF/CB=AE/AC
=>EF*AC=AE*CB
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: Xét ΔHCD vuông tại H và ΔCDB vuông tại C có
góc HCD=góc CDB
=>ΔHCD đồng dạng với ΔCDB
=>HC/CD=CD/DB
=>CD^2=HC*DB