K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

A B C D E F I M N

Do AE = CF nên AEFD và CFEB là hai hình thang vuông bằng nhau. Vậy thì \(S_{CFAB}=\frac{S_{ABCD}}{2}\Rightarrow S_{EMB}+S_{MNCB}+S_{NFC}=\frac{S_{ABCD}}{2}\)

Lại có \(S_{IBC}=\frac{S_{ABCD}}{2}\Rightarrow S_{IMN}+S_{NMCB}=\frac{S_{ABCD}}{2}\)

Vậy thì \(S_{IMN}=S_{MEB}+S_{NFC}\)

24 tháng 11 2016

em cảm ơn ạ 

3 tháng 7 2021

Giải nhanh giùm mik vs , mik cần gấp

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MFBài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.Bài 3....
Đọc tiếp

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF

Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.

Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.

Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.

Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK. 

giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha

 

0
5 tháng 1 2022

\(\Delta ADB\text{ cân tại A}\Rightarrow\widehat{ADB}=\dfrac{180^0-\widehat{BAD}}{2}=65^0\\ \text{Ta có }\widehat{MBH}=\widehat{BCD}=\widehat{ADN}=\widehat{BAD}=50^0\\ \Rightarrow\widehat{ODN}=\widehat{ADB}+\widehat{ADN}=115^0\\ MH\text{//}AN\Rightarrow\widehat{MHA}=\widehat{HAN}\\ \Rightarrow\widehat{MHB}+\widehat{MBH}=\widehat{BAD}+\widehat{NAD}\\ \Rightarrow\widehat{MHB}=\widehat{NAD}\\ \Rightarrow\Delta MHB\sim\Delta AND\left(g.g\right)\\ \Rightarrow\dfrac{MB}{AD}=\dfrac{HB}{ND}\Rightarrow MB\cdot NC=AD\cdot HB\left(1\right)\)

\(\left\{{}\begin{matrix}\widehat{OHB}=\widehat{AOD}=90^0\\\widehat{HBO}=\widehat{ODA}\end{matrix}\right.\Rightarrow\Delta HBO\sim\Delta ODA\\ \Rightarrow\dfrac{HB}{OD}=\dfrac{OB}{AD}\Rightarrow HB\cdot AD=OB\cdot OD\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\dfrac{MB}{OD}=\dfrac{OB}{ND}\\ \text{Mà }\widehat{MBO}=\widehat{NDO}\\ \Rightarrow\Delta MBO\sim\Delta ODN\left(c.g.c\right)\\ \Rightarrow\widehat{MOB}=\widehat{OND}\Rightarrow\widehat{MOB}+\widehat{NOD}=\widehat{OND}+\widehat{NOD}\\ \Rightarrow\widehat{MOB}+\widehat{NOD}=180^0-\widehat{NDO}=65^0\\ \Rightarrow180^0-\widehat{MON}=65^0\\ \Rightarrow\widehat{MON}=115^0\)

6 tháng 9 2015

bạn vô đây coi bài nào thích hớp thì xem Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE a) Chứng minh rằng HK song song với DE b) Tính HK, biết chu vi tam giác ABC bằng 10 cm Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB... Xem thêm - Tìm với Google