K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

NV
12 tháng 1

a.

DO ABCD là hình vuông \(\Rightarrow\widehat{ACD}=45^0\)

\(\Rightarrow\widehat{ACD}=\widehat{EBN}\)

Mà \(\widehat{ACD}\) và \(\widehat{EBN}\) cùng chắn EN

\(\Rightarrow\) Tứ giác BENC nội tiếp

\(\Rightarrow\widehat{BEN}+\widehat{BCN}=180^0\)

\(\Rightarrow\widehat{BEN}=180^0-\widehat{BCN}=180^0-90^0=90^0\)

\(\Rightarrow NE\perp BM\) tại E

b.

Tương tự ta có tứ giác ABFM nội tiếp (\(\widehat{MAF}=\widehat{MBF}=45^0\) cùng chắn MF)

\(\Rightarrow\widehat{BFM}+\widehat{BAM}=180^0\)

\(\Rightarrow\widehat{BFM}=90^0\Rightarrow MF\perp BN\)

\(\Rightarrow I\) là trực tâm của tam giác BMN

\(\Rightarrow BI\perp MN\)

NV
12 tháng 1

c.

Gọi H là giao điểm BI và MN

Do E và F cùng nhìn MN dưới 1 góc vuông 

\(\Rightarrow\) Tứ giác EFMN nội tiếp

\(\Rightarrow\widehat{EMN}+\widehat{EFN}=180^0\)

Mà \(\widehat{EFN}+\widehat{EFB}=180^0\)

\(\Rightarrow\widehat{EMN}=\widehat{EFB}\)

Lại có tứ giác ABFM nội tiếp (A và F cùng nhìn BM dưới 1 góc vuông)

\(\Rightarrow\widehat{EFB}=\widehat{AMB}\) (cùng chắn AB)

\(\Rightarrow\widehat{EMN}=\widehat{AMB}\)

\(\Rightarrow\Delta_VAMB=\Delta_VHMB\left(ch-gn\right)\)

\(\Rightarrow AM=HM\)

Đồng thời suy ra \(AB=BH\Rightarrow BH=BC\) (do AB=BC)

Theo Pitago: \(\left\{{}\begin{matrix}HN=\sqrt{BN^2-BH^2}\\CN=\sqrt{BN^2-BC^2}\end{matrix}\right.\) \(\Rightarrow CN=HN\)

\(\Rightarrow AM+CN=MH+NH=MN\)

\(\Rightarrow MD+DN+MN=MD+DN+AM+CN=AD+CD=2a\)

Pitago: \(MN^2=DM^2+DN^2\ge\dfrac{1}{2}\left(DM+DN\right)^2\Rightarrow MN\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)

\(\Rightarrow2a-\left(DM+DN\right)\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)

\(\Rightarrow2a\ge\left(\dfrac{2+\sqrt{2}}{2}\right)\left(DM+DN\right)\ge\left(2+\sqrt{2}\right).\sqrt{DM.DN}\)

\(\Rightarrow DM.DN\le\left(6-4\sqrt{2}\right)a^2\)

\(\Rightarrow S_{MDN}=\dfrac{1}{2}DM.DN\le\left(3-2\sqrt{2}\right)a^2\)

Dấu "=" xảy ra khi \(DM=DN=\left(\sqrt{6}-\sqrt{2}\right)a\)

27 tháng 11 2021

grade 7??

25 tháng 4 2017

a b o e f n m h q

A, DỄ DÀNG NHẬN THẤY AF VÀ BE LÀ CÁC TIA PHÂN GIÁC ( DO TAM GIÁC ABC ĐỀU)

=> CO LÀ TIA PHÂN GIÁC CỦA GÓC ACB

=> ACO = 30

DỄ DÀNG TÍNH ĐƯỢC OBC = 30

=> OBC = ACO

DO TAM GIÁC ABC ĐỀU => O LÀ GIAO ĐIỂM CỦA 3 ĐƯỜNG TRUNG TRỰC

=> OB = OC

TỪ ĐÓ DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC OBM = TAM GIÁC OCN ( C.G.C)

=> OM = ON

B,  KẺ FH VUÔNG GÓC VỚI EF, NQ VUÔNG GÓC VỚI EF

DO CF = AE , CN = BM

=> MF = NE

LẠI CÓ GÓC NEQ = CEF = CFE = 60

=> NEQ = CFE

TỪ ĐÓ DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC NQE = TAM GIÁC MHF ( G.C.G)

=> NQ = MH

TA CÓ NE SONG SONG VỚI MH , NQ = MH

=> MQNH LÀ HÌNH BÌNH HÀNH

=> QH CẮT MN TẠI TRUNG ĐIỂM CỦA MN

MÀ I LÀ TRUNG ĐIỂM CỦA MN

=> I THUỘC HQ

=> I THUỘC EF

=> ĐPCM

C, BÀI NÀY TỰ VẼ HÌNH NHÉ

TỪ M,N KỂ ĐƯỜNG VUÔNG GÓC VỚI AB CẮT AB TẠI H VÀ K. TỪ M KỂ ĐƯỜNG VUÔNG GÓC VỚI NK CẮT NK TẠI Q

=> MN LỚN HƠN HOẶC BẰNG MQ

MÀ MQ =HK

=> MN LỚN HƠN HOẶC BẰNG HK

MẶT KHÁC KA + HB = 1/2 AN + 1/2 BM = 1/2 AB = 1/2 BC = 1/2 AC

=> HK = 1/2 AB

=> MN LỚN HƠN HOẶC BẰNG 1/2AB

DẤU BẰNG XẢY RA KHI VÀ CHỈ KHI M VÀ N LÀ TRUNG ĐIỂM CỦA AC VÀ BC

( MÌNH MỚI HỌC LỚP 7)

25 tháng 4 2017

Nhac cau 3

Tu M,N ke duong vuong goc voi AB cat AB tai H va K.Tu M ke duong vuong goc voi NK cat NK tai Q

=>MN\(_{\ge}\)MQ. Ma MQ=HK

=>MN\(\ge\)HK

Mat \(\ne\)KA+HB=1/2AN+1/2BM=1/2AB=1/2BC=1/2CA

=>HK=1/2AB

=>MN\(\ge\)1/2AB.dau bang xay ra khi M,N la trung diem cua cac canh