Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì: FBM=FAM=45 độ nên BFMA là tứ giác nội tiếp
tương tự có đpcm
b, ta có:
MFN=DAB=90
NEM=BCD=90
=> nội tiếp
c, theo câu b ta có:
MNB=BEC=BNC nên: NB là phân giác góc INC
thấy ngay H là trực tâm tam giác BMN nên: BI vuông góc MN
do đó áp dụng tính chất đường phân giác ta được BI=BC=a.
Chứng minh góc EBN = góc ECN = 450
=> Tứ giác BENC nội tiếp (đpcm)
Mình bổ sung thêm :
\(\widehat{AKD}=67,5^o\Rightarrow\widehat{DAK}=22,5^o\)(Do \(\Delta ADK\)vuông tại D) (3)
\(\Delta AKH\)cân tại A (cmt) => AE vừa là đường cao đồng thời là đường trung trực của cạnh HK và là đường phân giác của \(\widehat{KAH}\)=> \(\widehat{EAK}=\widehat{EAH}=\frac{45^o}{2}=22,5^o\)(4)
Mặt khác CA là đường phân giác của \(\widehat{HCK}\)(Do ABCD là hình vuông) => CA là đường trung trực của cạnh HK (\(\Delta CHK\)vuông cân tại C (cmt)) . Hơn thế nữa, AE cũng là đường trung trực của cạnh HK (cmt) => A, E, C là 3 điểm thẳng hàng (5)
Từ (3), (4) và (5) => K là chân đường phân giác của \(\widehat{CAD}\)(K \(\in CD\))
cmtt : H là chân đường phân giác của \(\widehat{BAC}\)(H \(\in BC\))
a. DB là đường chéo của hình vuông ABCD => \(\widehat{ADB}=\widehat{CDB}=\widehat{KDM}=45^o\)(t/c)
Xét tứ giác AMKD ta có: \(\widehat{KDM}=\widehat{KAM}=\widehat{KAH}=45^o\)=> tứ giác AMKD nội tiếp (Dấu hiệu nhận biết: "đỉnh kề nhau của 1 tứ giác cùng nhìn 1 cạnh dưới 2 góc bằng nhau thì tứ giác đó là tứ giác nội tiếp")
=> \(\widehat{ADK}+\widehat{AMK}=180^o\)(Hệ quả)
ABCD là hình vuông => \(\widehat{ADK}=90^o\)=> \(\widehat{AMK}=90^o\)=> KM \(\perp AH\)(ĐPCM)
b. Chứng minh tương tự câu a ta có: ANHB là tứ giác nội tiếp và HN \(\perp AK\)
Xét \(\Delta AHK\)có: HN và KM lần lượt là 2 đường cao hạ từ đỉnh H và K và E là giao điểm của HN và KM (gt) => E là trực tâm của \(\Delta AHK\)(dhnb) => AE là đường cao thứ 3 của \(\Delta AHK\)=> AE \(\perp\)HK (đpcm)
c. \(S\Delta CHK=\frac{1}{2}CH.CK\)
\(S\Delta CHKmax\)<=> CH.CK max
Do CH, CK >0 => CH.CK \(\le\frac{CH^2+CK^2}{2}\)=> CH.CK max = \(\frac{CH^2+CK^2}{2}\).Dấu "=" xảy ra khi và chỉ khi CH = CK
=> BH = DK (Do BC = DC (cạnh hình vuông) và CH = CK )
Xét \(\Delta ADK\)VÀ \(\Delta ABH\)có:
AD = AB (vì ABCD là hình vuông)
\(\widehat{ADK}=\widehat{ABH}\)(\(=90^o\))
DK = BH (cmt)
=> \(\Delta ADK=\Delta ABH\)(c.g.c) => AK = AH => \(\Delta AKH\)cân tại A (Định nghĩa) => \(\widehat{AKH}=\widehat{AHK}=\frac{180^o-45^o}{2}=67,5^o\)
Xét \(\Delta CHKcó\) CH = CK => \(\Delta CHK\)vuông cân tại C => \(\widehat{CKH}=\widehat{CHK}=45^o\)
Mặt khác: \(\widehat{AKD}+\widehat{AKH}+\widehat{CKH}=180^o\)=> \(\widehat{AKD}=67,5^o\)
Xét \(\Delta ADK\)vuông tại D có: DK = AK. cos \(\widehat{AKD}\)=> AK = a. cos \(67,5^o\)=> CK = CD - DK = a - a. cos \(67,5^o\)=CH
=a. (1 - cos\(67,5^o\)) (1)
=> S\(\Delta CHK\)max = \(\frac{1}{2}.\frac{CH^2+CK^2}{2}\)(2)
Thay (1) vào (2) => Kết quả
a) Xét tam giác vuông ABC, theo Pitago ta có: \(NC^2=NB^2+BC^2=x^2+a^2\)
Xét tam giác vuông NCF, chiều cao CB: Áp dụng hệ thức lượng ta có : \(NF=\frac{NC^2}{NB}=\frac{x^2+a^2}{x}\)
AN = a - x ; \(\frac{EA}{BC}=\frac{AN}{NB}\Rightarrow EA=\frac{a-x}{x}.a=\frac{a^2-ax}{x}\)
\(AF=AN+NF=a-x+\frac{a^2+x^2}{x}=\frac{ax+a^2}{x}\)
Vậy nên \(S_{ACEF}=S_{EAF}+S_{CAF}=\frac{1}{2}.AF.EA+\frac{1}{2}AF.BC\)
\(=\frac{1}{2}.\frac{ax+a^2}{x}.\left(\frac{a^2-ax}{x}+a\right)=\frac{1}{2}.\frac{ax+a^2}{x}.\frac{a^2}{x}=\frac{a^4+a^3x}{2x^2}\left(đvdt\right)\)
b) Ta có \(\frac{a^4+a^3x}{2x^2}=3a^2\Rightarrow a^2+ax-6x^2=0\)
\(\Rightarrow\left(a-2x\right)\left(a+3x\right)=0\)
Do a, x > 0 nên a = 2x hay N là trung điểm AB.
a.
DO ABCD là hình vuông \(\Rightarrow\widehat{ACD}=45^0\)
\(\Rightarrow\widehat{ACD}=\widehat{EBN}\)
Mà \(\widehat{ACD}\) và \(\widehat{EBN}\) cùng chắn EN
\(\Rightarrow\) Tứ giác BENC nội tiếp
\(\Rightarrow\widehat{BEN}+\widehat{BCN}=180^0\)
\(\Rightarrow\widehat{BEN}=180^0-\widehat{BCN}=180^0-90^0=90^0\)
\(\Rightarrow NE\perp BM\) tại E
b.
Tương tự ta có tứ giác ABFM nội tiếp (\(\widehat{MAF}=\widehat{MBF}=45^0\) cùng chắn MF)
\(\Rightarrow\widehat{BFM}+\widehat{BAM}=180^0\)
\(\Rightarrow\widehat{BFM}=90^0\Rightarrow MF\perp BN\)
\(\Rightarrow I\) là trực tâm của tam giác BMN
\(\Rightarrow BI\perp MN\)
c.
Gọi H là giao điểm BI và MN
Do E và F cùng nhìn MN dưới 1 góc vuông
\(\Rightarrow\) Tứ giác EFMN nội tiếp
\(\Rightarrow\widehat{EMN}+\widehat{EFN}=180^0\)
Mà \(\widehat{EFN}+\widehat{EFB}=180^0\)
\(\Rightarrow\widehat{EMN}=\widehat{EFB}\)
Lại có tứ giác ABFM nội tiếp (A và F cùng nhìn BM dưới 1 góc vuông)
\(\Rightarrow\widehat{EFB}=\widehat{AMB}\) (cùng chắn AB)
\(\Rightarrow\widehat{EMN}=\widehat{AMB}\)
\(\Rightarrow\Delta_VAMB=\Delta_VHMB\left(ch-gn\right)\)
\(\Rightarrow AM=HM\)
Đồng thời suy ra \(AB=BH\Rightarrow BH=BC\) (do AB=BC)
Theo Pitago: \(\left\{{}\begin{matrix}HN=\sqrt{BN^2-BH^2}\\CN=\sqrt{BN^2-BC^2}\end{matrix}\right.\) \(\Rightarrow CN=HN\)
\(\Rightarrow AM+CN=MH+NH=MN\)
\(\Rightarrow MD+DN+MN=MD+DN+AM+CN=AD+CD=2a\)
Pitago: \(MN^2=DM^2+DN^2\ge\dfrac{1}{2}\left(DM+DN\right)^2\Rightarrow MN\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)
\(\Rightarrow2a-\left(DM+DN\right)\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)
\(\Rightarrow2a\ge\left(\dfrac{2+\sqrt{2}}{2}\right)\left(DM+DN\right)\ge\left(2+\sqrt{2}\right).\sqrt{DM.DN}\)
\(\Rightarrow DM.DN\le\left(6-4\sqrt{2}\right)a^2\)
\(\Rightarrow S_{MDN}=\dfrac{1}{2}DM.DN\le\left(3-2\sqrt{2}\right)a^2\)
Dấu "=" xảy ra khi \(DM=DN=\left(\sqrt{6}-\sqrt{2}\right)a\)