K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2023

loading...

SAMQ  = \(\dfrac{1}{3}\)SABQ (vì hai tam giác có chung chiều cao hạ từ đỉnh Q xuống đáy AB và AM = \(\dfrac{1}{3}\)ABQ)

AQ     =  DA - QD = DA  - \(\dfrac{1}{3}\)DA = \(\dfrac{2}{3}\)DA

SABQ =  \(\dfrac{2}{3}\)SABD (vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy AD và QA = \(\dfrac{2}{3}\)DA)

SABD = \(\dfrac{1}{2}\) SABCD (vì ABCD là hình chữ nhật) 

SAMQ = \(\dfrac{1}{3}\)\(\times\)\(\dfrac{2}{3}\)\(\times\)\(\dfrac{1}{2}\) \(\times\) SABCD = 162 \(\times\) \(\dfrac{1}{9}\) = 18 (cm2)

SBMN = \(\dfrac{2}{3}\)SBCM (vì hai tam giác có chung chiều cao hạ từ đỉnh M xuống đáy BC và BN = \(\dfrac{2}{3}\)BC)

BM = AB - AM = AB - \(\dfrac{1}{3}\)AB = \(\dfrac{2}{3}\)AB 

SBCM = \(\dfrac{2}{3}\)SABC ( vì hai tam giác có chung chiều cao hạ từ đỉnh C xuống đáy AB và BM = \(\dfrac{2}{3}\)AB)

SABC = \(\dfrac{1}{2}\)SABCD ( vì ABCD là hình chữ nhật)

SBMN = \(\dfrac{2}{3}\times\dfrac{2}{3}\) \(\times\) \(\dfrac{1}{2}\)SABCD = 162 \(\times\) \(\dfrac{2}{9}\) = 36 (cm2)

CN = BC - BN = BC - \(\dfrac{2}{3}\)BC = \(\dfrac{1}{3}\)BC 

SPCN = \(\dfrac{1}{3}\)SBPC( vì hai tam giác có cùng chiều cao hạ từ đỉnh P xuống đáy BC và CN = \(\dfrac{1}{3}\)BC 

SPBC = \(\dfrac{2}{3}\)SBCD (vì hai tam giác có cùng chiều cao hạ từ đỉnh B xuống đáy CD và CP = \(\dfrac{2}{3}\)CD)

SBCD = \(\dfrac{1}{2}\)SABCD ( vì ABCD là hình chữ nhật)

SPCN = \(\dfrac{1}{3}\times\dfrac{2}{3}\times\dfrac{1}{2}\)SABCD = 162\(\times\)\(\dfrac{1}{9}\) = 18(cm2)

DP = DC - CP = DC - \(\dfrac{2}{3}\)DC = \(\dfrac{1}{3}\)DC 

SDPQ = \(\dfrac{1}{3}\)SDCQ (vì hai tam giác có chung chiều cao hạ từ đỉnh Q xuống đáy DC và DP = \(\dfrac{1}{3}\)DC)

SDCQ = \(\dfrac{1}{3}\)SACD (vì hai tam giác có chung chiều cao hạ từ đỉnh C xuống đáy AD và DQ = \(\dfrac{1}{3}\)AD)

SADC = \(\dfrac{1}{2}\)SABCD ( vì ABCD là hình chữ  nhật)

SDPQ  = \(\dfrac{1}{3}\times\dfrac{1}{3}\times\dfrac{1}{2}\)SABCD = 162 \(\times\) \(\dfrac{1}{18}\) = 9 (cm2)

SMNPQ = SABCD - (SDPQ  + SPCN + SBMN + SAQM)

SMNPQ = 162 - (9 + 18 + 36 + 18) = 81 (cm2)

Đáp số : 81 cm2

 

 

 

 

 

 

23 tháng 6 2023

Số viên bi Bình có là:

 15×2=30  \(viên bi)

Tổng số viên bi của Bình và An là:

 15+30=45 (viên bi)

Trung bình cộng số viên bi của 3 bạn là:

(45+3):2=24 (viên bi) 

Số viên bi của Thịnh là:

24+3=27 (viên bi)

Đáp số: ...

 

23 tháng 6 2023

Sloading...

AQ = DA - DQ = DA - \(\dfrac{3}{4}\)DA = \(\dfrac{1}{4}\)DA

SAMQ = \(\dfrac{1}{4}\)SAMD (vì hai tam giác có chung chiều cao hạ từ đỉnh M xuống đáy AD và AQ = \(\dfrac{1}{4}\)AD)

SAMD = \(\dfrac{1}{3}\)SABD ( vì hai tam giác có chung chiều cao hạ từ đỉnh D xuống đáy AB và AM = \(\dfrac{1}{3}\)AB)

SABD =  \(\dfrac{1}{2}\)SABCD(vì ABCD là hình chữ nhật)

SAMQ = \(\dfrac{1}{4}\times\dfrac{1}{3}\times\dfrac{1}{2}\)SABCD = 216\(\times\) \(\dfrac{1}{24}\) = 9 (cm2)

SMBN  = \(\dfrac{2}{3}\)SBCM (vì hai tam giác có chung chiều cao hạ từ đỉnh M xuống đáy BC và BN = \(\dfrac{2}{3}\)BC)

BM = AB - AM = AB - \(\dfrac{1}{3}\)AB = \(\dfrac{2}{3}\)AB

SBCM  = \(\dfrac{2}{3}\)SABC (vì hai tam giác có chung chiều cao hạ từ đỉnh C xuống đáy AB và BM = \(\dfrac{2}{3}\)AB)

SABC = \(\dfrac{1}{2}\)SABCD (vì ABCD là hình chữ nhật)

SMBN = \(\dfrac{2}{3}\times\dfrac{2}{3}\times\dfrac{1}{2}\)SABCD = 216\(\times\)\(\dfrac{2}{9}\) = 48 (cm2)

CN = BC - BN = BC - \(\dfrac{2}{3}\)BC = \(\dfrac{1}{3}\)BC 

SCPN = \(\dfrac{1}{3}\)SPBC (vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy BC và CN = \(\dfrac{1}{3}\)BC)

SPBC  = \(\dfrac{2}{3}\)SBCD (vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy CD và CP = \(\dfrac{2}{3}\)CD)

SBCD = \(\dfrac{1}{2}\)SABCD (vì ABCD là hình chữ nhật)

SCPN = \(\dfrac{1}{3}\times\dfrac{2}{3}\times\dfrac{1}{2}\)SABCD =  216 \(\times\) \(\dfrac{1}{9}\) = 24 (cm2)

SDPQ  = \(\dfrac{3}{4}\)SDPA (vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy DA và DQ = \(\dfrac{3}{4}\)DA)

DP = CP - DC = DC - \(\dfrac{2}{3}\)DC = \(\dfrac{1}{3}\)DC 

SDPA = \(\dfrac{1}{3}\)SACD(vì hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy CD và DP = \(\dfrac{1}{3}\)DC)

SACD = \(\dfrac{1}{2}\)SABCD(vì ABCD là hình chữ nhật) 

SDPQ = \(\dfrac{3}{4}\times\dfrac{1}{3}\times\dfrac{1}{2}\) SABCD = 216 \(\times\) \(\dfrac{1}{8}\) = 27 (cm2)

SMNPQ = 216 - (9+ 48 + 24 + 27) = 108(cm2)

Đáp số: 108 cm2

 

 

 

cj ơi bl nhầm chỗ r;-;

TH
Thầy Hùng Olm
Manager VIP
22 tháng 6 2023

SMNPQ\(\dfrac{1}{2}\) x SABCD = 288 (cm2)

HD: Hình chữ nhật chia thành 4 hình tam giác vuông và hình thoi MNPQ

26 tháng 6 2023


 Ta thấy rằng \(\dfrac{BN}{BC}=\dfrac{AQ}{AD}\), mà \(BC=AD\) nên \(BN=AQ\), cũng có nghĩa ABNQ và CDQN là các hình chữ nhật. Ta kẻ MH và PK vuông góc với QN. Khi đó \(S_{MNPQ}=S_{MNQ}+S_{PNQ}\) 

\(=\dfrac{1}{2}\times PQ\times MH+\dfrac{1}{2}\times PQ\times PK\) 

\(=\dfrac{1}{2}\times PQ\times\left(MH+PK\right)\) 

\(=\dfrac{1}{2}\times AB\times BC\) (do \(PQ=AB\) và \(MH+PK=BC\))

\(=\dfrac{1}{2}\times S_{ABCD}\)

\(=\dfrac{1}{2}\times324=162\left(cm^2\right)\)

26 tháng 6 2023

Phải sửa lại như thế này nhé. Nãy mình nhầm.

TH
Thầy Hùng Olm
Manager VIP
30 tháng 6 2023

HD:

Tính diện tích các tam giác vuông: AMQ; MBN; NCP và PDQ

Lấy diện tích hình chữ nhật ABCD trừ đi tổng diện tích 4 tam giác vuông trên sẽ được diện tích hình tứ giác MNPQ

30 tháng 6 2023

cko e  đáp án

 

10 tháng 6 2023

A B C D M N P Q

Hình tớ vẽ hơi xấu, bạn thông cảm nhé.

Ta có \(S\Delta AMQ=\dfrac{1}{2}.AM.AQ=\dfrac{1}{2}.\dfrac{1}{2}AB.\dfrac{1}{3}AD\)

\(=\dfrac{1}{12}.288=24\left(cm^2\right)\)

   \(S\Delta MBN=\dfrac{1}{2}MB.BN=\dfrac{1}{2}.\dfrac{1}{2}AB.\dfrac{1}{4}BC\)

\(=\dfrac{1}{16}.288=18\left(cm^2\right)\)

   \(S\Delta QDP=\dfrac{1}{2}QD.DP=\dfrac{1}{2}.\dfrac{2}{3}AD.\dfrac{2}{3}DC\)

\(=\dfrac{2}{9}.288=64\left(cm^2\right)\)

  \(S\Delta NPC=\dfrac{1}{2}.NC.CP=\dfrac{1}{2}.\dfrac{3}{4}BC.\dfrac{1}{3}.DC\)

\(=\dfrac{1}{8}.288=36\left(cm^2\right)\)

\(S_{MNPQ}=288-36-64-18-24=146\left(cm^2\right)\)

11 tháng 6 2023

loading...

DQ + QA = DA ⇒ QA = DA - DQ = DA - \(\dfrac{2}{3}\)DA = \(\dfrac{1}{3}\)DA

SAMQ = \(\dfrac{1}{3}\)SADM( Vì hai tam giác có chung chiều cao hạ từ đỉnh M xuống đáy AD và AQ = \(\dfrac{1}{3}\)AD) 

SADM = \(\dfrac{1}{2}\)SABD(vì hai tam giác có chung chiều cao hạ từ đỉnh D xuống đáy AB và AM = \(\dfrac{1}{2}\)AB)

SABD = \(\dfrac{1}{2}\)SABCD(vì ABCD là hình chữ nhật)

⇒SAMQ = \(\dfrac{1}{3}\times\dfrac{1}{2}\times\dfrac{1}{2}\)\(\times\)SABCD = 288 \(\times\) \(\dfrac{1}{12}\)= 24 (cm2)

SDPQ = \(\dfrac{2}{3}\)SADP(vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy AD và DQ = \(\dfrac{2}{3}\)DA)

DP = DC - CP = DC - \(\dfrac{1}{3}\)DC = \(\dfrac{2}{3}\)DC

SADP = \(\dfrac{2}{3}\)SACD(Vì hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy DC và DP = \(\dfrac{2}{3}\) DC)

SACD = \(\dfrac{1}{2}\)SABCD

⇒SDPQ = \(\dfrac{2}{3}\times\dfrac{2}{3}\times\)\(\dfrac{1}{2}\)\(\times\)SABCD = 288 \(\times\) \(\dfrac{2}{9}\)= 64 (cm2)

CN = BC - BN = BC - \(\dfrac{1}{4}\)BC = \(\dfrac{3}{4}\)BC

SCNP = \(\dfrac{3}{4}\)SCBP(vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy BC và CN = \(\dfrac{3}{4}\)BC)

SCBP =  \(\dfrac{1}{3}\)SBCD(vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đấy CD và CP = \(\dfrac{1}{3}\) CD)

SBCD = \(\dfrac{1}{2}\)SABCD (vì ABCD là hình chữ nhật)

⇒SCNP = \(\dfrac{3}{4}\times\dfrac{1}{3}\times\dfrac{1}{2}\) SABCD =  288 \(\times\) \(\dfrac{1}{8}\) = 36 (cm2)

SBMN = \(\dfrac{1}{4}\)SBCM (Vì hai  tam giác có chung đường cao hạ từ đỉnh M xuống đáy BC và BN = \(\dfrac{1}{4}\)BC)

SBCM = \(\dfrac{1}{2}\)SABC(Vì hai tam giác có chung chiều cao hạ từ đỉnh C xuống đáy AB và BM =\(\dfrac{1}{2}\)AB)

SABC =  \(\dfrac{1}{2}\)SABCD(vì ABCD là hình chữ nhật)

⇒ SBMN \(\dfrac{1}{4}\times\dfrac{1}{2}\times\dfrac{1}{2}\)\(\times\)SABCD = 288 \(\times\)\(\dfrac{1}{16}\)  = 18 (cm2)

 SMNPQ =  SABCD  - (SAMQ +SDPQ+SCNP+SBMN)

Diện tích của MNPQ là:

 288 - (64 + 24 + 36 + 18) =  146 (cm2)

Đáp số: 146 cm2

24 tháng 6 2023
  • Diện tích tam giác ABM là 1/2 * AB * AM = 1/2 * AB * 1/3 AB = 1/6 * AB^2
  • Diện tích tam giác BCN là 1/2 * BC * BN = 1/2 * BC * 2/3 BC = 1/3 * BC^2
  • Diện tích tam giác CDP là 1/2 * CD * CP = 1/2 * CD * PD = 1/6 * CD^2
  • Diện tích tam giác DAQ là 1/2 * DA * DQ = 1/2 * DA * 1/3 DA = 1/6 * DA^2

Vậy tổng diện tích của 4 tam giác trên là:

1/6 * AB^2 + 1/3 * BC^2 + 1/6 * CD^2 + 1/6 * DA^2

 

  • Đường chéo AC chia hình chữ nhật ABCD thành hai tam giác có diện tích lần lượt là 1/2 * AC * AB/2 = 1/4 * AC * AB và 1/2 * AC * CD/2 = 1/4 * AC * CD
  • Đường chéo BD cũng chia hình chữ nhật ABCD thành hai tam giác có diện tích lần lượt là 1/2 * BD * BC/2 = 1/4 * BD * BC và 1/2 * BD * DA/2 = 1/4 * BD * DA

Do đó, ta có:

  • Diện tích tam giác EFG là 1/2 * EF * EG = 1/2 * (AC/2) * (BD/2) = 1/8 * AC * BD

Vậy diện tích hình MNPQ bằng:

2 * diện tích tam giác EFG = 2 * 1/8 * AC * BD = 1/4 * AB * CD

Từ đó, ta suy ra diện tích hình MNPQ là 1/4 diện tích hình chữ nhật ABCD:

Diện tích hình MNPQ = 1/4 * 324 cm^2 = 81 cm^2

` @ L I N H `

  • Diện tích tam giác ABM là 1/2 * AB * AM = 1/2 * AB * 1/3 AB = 1/6 * AB^2
  • Diện tích tam giác BCN là 1/2 * BC * BN = 1/2 * BC * 2/3 BC = 1/3 * BC^2
  • Diện tích tam giác CDP là 1/2 * CD * CP = 1/2 * CD * PD = 1/6 * CD^2
  • Diện tích tam giác DAQ là 1/2 * DA * DQ = 1/2 * DA * 1/3 DA = 1/6 * DA^2

Vậy tổng diện tích của 4 tam giác trên là:

1/6 * AB^2 + 1/3 * BC^2 + 1/6 * CD^2 + 1/6 * DA^2

  • Đường chéo AC chia hình chữ nhật ABCD thành hai tam giác có diện tích lần lượt là 1/2 * AC * AB/2 = 1/4 * AC * AB và 1/2 * AC * CD/2 = 1/4 * AC * CD
  • Đường chéo BD cũng chia hình chữ nhật ABCD thành hai tam giác có diện tích lần lượt là 1/2 * BD * BC/2 = 1/4 * BD * BC và 1/2 * BD * DA/2 = 1/4 * BD * DA

Do đó, ta có:

  • Diện tích tam giác EFG là 1/2 * EF * EG = 1/2 * (AC/2) * (BD/2) = 1/8 * AC * BD

Vậy diện tích hình MNPQ bằng:

2 * diện tích tam giác EFG = 2 * 1/8 * AC * BD = 1/4 * AB * CD

Từ đó, ta suy ra diện tích hình MNPQ là 1/4 diện tích hình chữ nhật ABCD:

Diện tích hình MNPQ = 1/4 * 324 cm^2 = 81 cm^2

23 tháng 6 2023

 Trước hết ta cần xem xét điều sau: Nếu 2 tam giác có chung đường cao thì tỉ số diện tích giữa 2 tam giác đó bằng tỉ số độ dài 2  cạnh đáy tương ứng.

 Điều này khá dễ thấy vì giả sử có hình vẽ trên thì \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{\dfrac{1}{2}\times AH\times BD}{\dfrac{1}{2}\times AH\times CD}=\dfrac{BD}{CD}\) 

 Tiếp đến, ta có tiếp điều sau: Cho tam giác ABC bất kì. Các điểm E, F lần lượt nằm trên các cạnh AC, AB. Khi đó \(\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{AE\times AF}{AB\times AC}\) (tạm gọi đây là (*))

  Điều này trở nên dễ thấy nhờ điều ta mới đề cập đến ở trên. Vì \(\dfrac{S_{AEF}}{S_{ABE}}=\dfrac{AF}{AB}\)  và \(\dfrac{S_{ABE}}{S_{ABC}}=\dfrac{AE}{AC}\) nên nhân vế theo vế rồi rút gọn, ta được: \(\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{AE\times AF}{AB\times AC}\).

 Bây giờ, ta quay lại bài toán chính.

Áp dụng (*) cho tam giác ABD với 2 điểm M, Q nằm trên AB, AD, ta được \(\dfrac{S_{AMQ}}{S_{ABD}}=\dfrac{AM}{AB}\times\dfrac{AQ}{AD}=\dfrac{2}{3}\times\dfrac{2}{3}=\dfrac{4}{9}\)   (1)

Tương tự, ta cũng có \(\dfrac{S_{BMN}}{S_{BAC}}=\dfrac{BM}{BA}\times\dfrac{BN}{BC}=\dfrac{1}{3}\times\dfrac{2}{3}=\dfrac{2}{9}\)    (2)

\(\dfrac{S_{CNP}}{S_{CBD}}=\dfrac{CN}{CB}\times\dfrac{CP}{CD}=\dfrac{1}{3}\times\dfrac{1}{2}=\dfrac{1}{6}\)      (3)

\(\dfrac{S_{DPQ}}{S_{DCA}}=\dfrac{DP}{DC}\times\dfrac{DQ}{DA}=\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{1}{6}\)       (4)

 Hơn nữa, nhận thấy rằng diện tích của 4 tam giác ABD, BAC, CBD và DCA đều bằng nhau và bằng \(\dfrac{1}{2}\) diện tích của hình chữ nhật ABCD nên cộng theo vế (1), (2), (3) và (4) suy ra:

 \(\dfrac{S_{AQM}+S_{BMN}+S_{CNP}+S_{DPQ}}{\dfrac{1}{2}S_{ABCD}}=1\), mà tổng diện tích của 4 tam giác AQM, BMN, CNP và DPQ chính bằng \(S_{ABCD}-S_{MNPQ}\) nên ta có \(\dfrac{S_{ABCD}-S_{MNPQ}}{\dfrac{1}{2}S_{ABCD}}=1\) \(\Leftrightarrow S_{ABCD}-S_{MNPQ}=\dfrac{1}{2}S_{ABCD}\) \(\Leftrightarrow S_{MNPQ}=\dfrac{1}{2}S_{ABCD}=\dfrac{1}{2}.496=216\left(cm^2\right)\)

Vậy \(S_{MNPQ}=216cm^2\)

 

24 tháng 6 2023

help me

 

24 tháng 6 2023

Cô còn đang vẽ hình em ơi.